Course Specifications

University: Benha University
Faculty: Benha Faculty of Engineering

Course specifications
Program(s) on which the course is given: Electrical Engineering technology Dep.
Major or minor element of programs: Major
Department offering the program: Electrical Engineering technology Dep.
Department offering the course: Electrical Engineering technology Dep.
Academic year / Level: Fourth year
Date of specification approval: 2009

A- Basic Information

Title: Summer Training
Code: E400
Credit Hours: N.A.
Lecture: 0
Tutorial: 0
Practical: 0
Total: 0

B- Professional Information

1 - Overall aims of course

Minimum of six weeks practical training in a factory under supervision of the factory staff and a member of the institute. A report has to be written and is to be discussed by an institute member.

2- Intended learning outcomes of course (ILOs)

a. Knowledge and understanding:
 - Define and describe current engineering problems in the industry/community and how to formulate the problem in the form of "An Essential Question"
 - Modeling the real-life problem in engineering context
 - Practicing collecting scientific, engineering and market data on a particular problem
 - Applying the engineering knowledge and skills earned throughout the program
 - Practicing team work and synergy with other students and with the advisors and the program coordinator
 - Practicing proper technical writing and oral presentation skills
 - Establishing contacts with the industry/community
• Other Specific intended learning outcomes that depend on the particular project and program

b- Professional and practical skills
By the end of this course, the student should be able to:
• Implement the techniques of oral and written presentations.
• Apply project management fundamentals.
• Understand the ethics of engineering profession and environmental issues.

c- General and transferable skills
By the end of this course, the student should be able to:
• Work cooperatively and effectively in a group
• Find information independently
• Interact with industry.

3 – Teaching and learning methods
3.1- Tutorials
3.2- Practice in Laboratories
3.3- Internet collected information and Self-study projects

4 - Student assessment methods
4.1- Weekly follow ups with the teams by College Coordinators on progress & communication skills
4.2- Oral exams to assess the abilities of discussing physical concepts
4.3- Final report and presentation to assess professional skills

Assessment schedule

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Content</th>
<th>Submitted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>Practical training in a factory under supervision of the factory staff and a member of the institute. A report has to be written and is to be discussed by an institute member.</td>
<td>Week 6</td>
</tr>
</tbody>
</table>

Weighting of assessments

Final examination 40%
Semester work 60%
Total 100%

5- List of references
 Books, lecture notes, internet, etc.

6- Facilities required for teaching and learning
 Lecture rooms – Experimental Labs - computers – Virtual simulation programs

Course coordinator:
Head of Department: Assoc. Prof. Ghada Amer

Date: