Course Specifications

University: Benha University Faculty: Benha Faculty of Engineering

Course specifications
Program(s) on which the course is given: Control and Measurements Dep.
Major or minor element of programs: Major
Department offering the program: Electrical Engineering technology Dep.
Department offering the course: Electrical Engineering technology Dep.
Academic year / Level: Forth year
Date of specification approval: 2009

A- Basic Information
Title: Microprocessors Based Systems Code: E421
Credit Hours: N.A. Lecture: 3
Tutorial: 2 Practical: 1 Total: 6

B- Professional Information

1 - Overall aims of course
This is an introductory course in Microprocessors Based Systems. It provides a review of number systems and computer codes, data and arithmetic, Microcomputer Fundamentals (architecture, CPU, Memory, I/O) and operation, Architecture of Microprocessor; Accumulator, Condition Code Registers CCR, PC, Stack and Stack Pointer SP, Register file, arithmetic and Logic Unit ALU. Microprocessor interfaces; with ROM; with RAM, I/O interfacing basics, Synchronous I/O data transfers using interrupts. Selected Architectures of 8-bit microprocessors (8085, M6800, 6502), Instruction set, programming examples, support chips.

2- Intended learning outcomes of course (ILOs)
a- Knowledge and understanding:
On successful completion of the module the student should:

- The student will list the number systems and computer codes.
- The student will describe the Microcomputer Fundamentals (architecture, CPU, Memory, I/O) and operation.
- The student will describe the Microprocessor Interfacing with ROM, RAM and I/O interfacing basics.
• The student will explain the operation and interface of a selected architectures of 8-bit microprocessors (8085, M6800, 6502).

b- Intellectual skills
By the end of this course, the student should be able to:
• Link the number systems and computer codes.
• Analyze the Microprocessor Interfacing with ROM, RAM and I/O interfacing basics.
• Analyze the operation and interface of a selected architectures of 8-bit microprocessors (8085, M6800, 6502).

c- Professional and practical skills
By the end of this course, the student should be able to:
• Perform different measurements on basic instruments.
• Perform simple Lab experiments.
• Collect information from collected data in the lab.

d- General and transferable skills
By the end of this course, the student should be able to:
• Work cooperatively and effectively in a group
• Present information independently

3- Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of Hours</th>
<th>Lecture</th>
<th>Tutorial/Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>6</td>
<td>3</td>
<td>2/1</td>
</tr>
<tr>
<td>A review of number systems and computer codes, data and arithmetic</td>
<td>6</td>
<td>3</td>
<td>2/1</td>
</tr>
<tr>
<td>Microcomputer Fundamentals</td>
<td>12</td>
<td>6</td>
<td>4/2</td>
</tr>
<tr>
<td>Architecture of Microprocessor</td>
<td>12</td>
<td>6</td>
<td>4/2</td>
</tr>
<tr>
<td>Accumulator and Condition Code Registers (CCR)</td>
<td>12</td>
<td>6</td>
<td>4/2</td>
</tr>
<tr>
<td>Microprocessor Interfacing</td>
<td>12</td>
<td>6</td>
<td>4/2</td>
</tr>
</tbody>
</table>
Selected Architectures of 8-bit microprocessors (8085, M6800, 6502) & 12 & 6 & 4/2

Instruction set and programming examples & 12 & 6 & 4/2

Total & 84 & 42 & 28/14

4– Teaching and learning methods
 4.1- Lectures
 4.2- Tutorials
 4.3- Practice in Laboratories
 4.4- Internet collected information and Self-study projects

5- Student assessment methods
 5-1 Written exams (Final and Midterm), assignments and quizzes to assess knowledge and understanding, solving problems skills and interpretation capabilities of physical phenomena.
 5-2 Oral exams to assess the abilities of discussing physical concepts
 5-3 Practical exam to assess measuring and professional skills

Assessment schedule
 Quiz 1 Week No. 4
 Midterm Week No. 8
 Quiz 2 Week No. 12
 Oral and Practical examWeek No. 14
 Final written examWeek No. 15

Weighting of assessments
 Final-term examination 60%
 Semester work 40%
 Total 100%

6- List of references
 - Recommended books

7- Facilities required for teaching and learning
Lecture rooms – Tutorial section rooms – Experimental Labs - computers – Virtual simulation programs

Course coordinator:
Head of Department: Assoc. Prof. Ghada Amer
Date: