Course Specifications

University: Benha University Faculty: Benha Faculty of engineering

Course specifications
Programme(s) on which the course is given: Electrical Engineering technology Dep.
Major or minor element of programmes: Major
Department offering the programme: Mechanical Engineering technology Dep.
Department offering the course: Electrical Engineering technology Dep.
Academic year / Level: second year
Date of specification approval: 2009

A- Basic Information
Title: Electrical Engineering Code: E 030
Credit Hours: N.A. Lecture:
Tutorial: \ Practical: \ Total: \\

B- Professional Information

1 - Overall aims of course
Upon successful completion of this course, Students will become familiar with:

2- Intended learning outcomes of course (ILOs)
a. Knowledge and understanding:
 • Define electric circuits.
 • Provide students experience in the application of knowledge acquired in the classroom, to enable productive solutions to practical electrical engineering problems.
 • Describe linear circuits –circuit concepts- resistive circuits’ op- amplifiers.
 • Explain Semiconductors –diode circuit –transistor circuit and integrated circuit.
 • Explain Semiconductors –diode circuit –transistor circuit and integrated circuit.
b. Intellectual skill

- Analyze of electric circuit;
- conclude Basics of operational amplifier;
- evaluate sinusoidal steady state analysis;
- Apply Techniques of resistive circuits analysis;
- Apply DC circuit and net work theorem.
- Analyze Capacitance inductance ac circuits transient response -frequency response and filter
- Interpret Balanced 3-phasa circuit and Power calculation
- Apply Sinusoidal steady state analysis.

c- Professional and practical skills

By the end of this course, the student should be able to:

- Diagnose Electric circuit elements.
- Design Nonlinear electronic circuit –amplifier circuit

d- General and transferable skills

By the end of this course, the student should be able to:

d.1 Work cooperatively and effectively in a group

d.2 Find information independently

3- Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of Hours</th>
<th>Lecture</th>
<th>Tutorial/Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>electric circuit elements</td>
<td>6</td>
<td>4</td>
<td>-/2</td>
</tr>
<tr>
<td>Techniques of resistive circuits analysis</td>
<td>4</td>
<td>2</td>
<td>-/2</td>
</tr>
<tr>
<td>DC circuit and net work theorem</td>
<td>8</td>
<td>4</td>
<td>-/4</td>
</tr>
<tr>
<td>Linear circuits –circuit concepts- resistive circuits’ op- amp.</td>
<td>8</td>
<td>3</td>
<td>1/4</td>
</tr>
<tr>
<td>Capacitance inductance ac circuits transient response -frequency response and filter</td>
<td>8</td>
<td>4</td>
<td>-/4</td>
</tr>
<tr>
<td>semiconductors</td>
<td>9</td>
<td>2</td>
<td>3/4</td>
</tr>
<tr>
<td>Nonlinear electronic circuit</td>
<td>5</td>
<td>2</td>
<td>3/-</td>
</tr>
<tr>
<td>3-phasa circuit and Power calculation</td>
<td>8</td>
<td>4</td>
<td>-/4</td>
</tr>
<tr>
<td>sinusoidal steady state analysis</td>
<td>5</td>
<td>3</td>
<td>2/-</td>
</tr>
</tbody>
</table>
4– Teaching and learning methods
 4.1- Lectures
 4.2- Tutorials
 4.3- Practice in Laboratories
 4.4- Internet collected information and Self-study projects

5- Student assessment methods
 5-1 Written exams (Final and Midterm), assignments and quizzes to assess knowledge and understanding, solving problems skills and interpretation capabilities of physical phenomena.
 5-2 Oral exams to assess the abilities of discussing physical concepts
 5-3 Practical exam to assess measuring and professional skills

Assessment schedule
 Quiz 1 Week No. 4
 Midterm Week No. 8
 Quiz 2 Week No. 12
 Oral and Practical examWeek No. 14
 Final written exam Week No. 15

Weighting of assessments
 Mid-term examination 12%
 Final-term examination 60%
 Oral and Practical examination 20%
 Semester work 8%
 Total 100%

6- List of references
 6.1- Lecture notes
 6.3- Recommended books
 1-Electric circuits JAMES W. NILSSON
7- Facilities required for teaching and learning
 Lecture rooms – Tutorial section rooms – Experimental Labs - computers – Virtual simulation programs

Course coordinator:
Head of Department: Assoc. Prof. Ghada Amer
Date: