E1518 Model answer Antenna waves
Qi
I (a)

(1) Reactive near field $0<r<0.62 \sqrt{D^{3} / \lambda}$
(2) Radiating near field $0.62 \sqrt{D_{\lambda}^{3}}<r<2 D^{2} / \lambda$
(3) N far field $r>2 D^{2} / \lambda$
(6) HPBN: In ap lane containing the direction of max. of beam, the angle between the two directions in which the radiation intensity is $\frac{1}{2}$ of max.
$D_{0}=\frac{4 \pi U_{\max }}{\Theta_{1} \theta_{2}}$ where $\theta_{1} \& \theta_{2}$ HPBW.
(c) Love principle: anull bield is produced within the imaginary surface S. where $E \& H=0$ withing Cant be disturbed of the properties of medium are changed

(d) quadratic phase effect i. the phase difference. between the point at Center of horn and the one at horn edges. Leading to the two signals arenot arrived at same time on horn aperture plane.

$$
\begin{align*}
\delta\left(y^{\prime}\right) & =\frac{1}{2}\left(\frac{y^{\prime 2}}{\rho_{1}}\right) \text { or } \quad \sigma_{0}(y)=\rho_{\rho}\left(y^{\prime}\right)-\rho_{1} \\
\text { phat } & =k \delta\left(y^{\prime}\right)
\end{align*}
$$

that affect the pattern specially in E-Plam which introduce ripples in pattern. To Compensate that effect, a lens are implanted on horn apenture optimal dimensions

$$
a_{1}=\sqrt{3 \lambda \rho_{2}} \quad, \quad b_{1}=\sqrt{2 \lambda \rho_{1}}
$$

(e) benefit, of Corr :-
(1) High impedan a surface to vanish surface current.
(2) Smoothing in pattern due to eliminating surface Currant.
(3) improving back and side-lobes.
(4) enhancing the efficiency
(9) Advantages of microstrip:-

- Low profile.
- Conformable.
- simple \& inexparsiae.
- mechanically robust.
- very versatile.

\square

$$
3
$$

nom uniform
choulfe freq. $5 C_{n}$.
Compact
simple
single feeder
difficult implementation
uniform
single freq. SCour
wider size
bit Wider size
cascade feeding.
of active devices. easy to implant amplifier

III spillover elf the amount of reflected field by the reflector to the emanated fer closer to reflector * Taper eff. is a measure of how E-field is distributed (amplitude) across the antenna aperture.

- Can be improved by moving feeder away from reflector
$\boxed{Q 2}$
(I) Cavity model :- the patch is modelled as a Cavity of upper and lower PEC while the four sided walls as $P M C$. From point of view of radiation mechanism, the patch is modelled as a two radiating slots each one has $M=-2 \hat{n} \times E$ while atwo non radiating slots located on the two other sides of PMC walls. These two M (magneti cdipoles) produce a broad-side far field pattern. As shown infin., the two radiating M dipoles are separated by $\frac{\lambda}{2}$.

II
(a)

$$
\begin{align*}
& \beta_{x}=\frac{m \pi}{w} \\
& \beta_{y}=\frac{n \pi}{L} \tag{3}\\
& \beta_{z}=\frac{p \pi}{h}
\end{align*}
$$

(b) $f_{m n p}=\frac{1}{2 \pi \sqrt{\mu_{G}}} \sqrt{\left(\frac{m \pi}{w}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{\rho \pi}{h}\right)^{2}}$
(c) $L>W>h \quad T M_{0 / 0}$
(d) $f_{o / 0}=\frac{1}{2 \pi \sqrt{\mu \epsilon}}\left(\frac{\pi}{L}\right)=\frac{1}{2 L \sqrt{\mu \epsilon}}$

N

$$
E=\hat{a}_{2} E_{0} e^{-j k y^{\prime} \sin \phi_{0}} e_{e}^{j k x^{\prime} \cos \phi_{0}}
$$

at $y=0$

$$
\begin{aligned}
E & =E_{0} e^{j k} x^{\prime} \cos \phi_{0} \hat{a} z \\
M & =-2 \hat{a} a y \times E=-2 \hat{a}_{y} \times a_{z} \quad e^{\prime} j k x^{\prime} \cos \phi_{0} \\
& \left.=-2 \hat{a} x e^{j} x^{\prime} \cos \phi_{0}\right\} \\
J=0 \text { every where } & \begin{array}{l}
-\frac{a}{2}<x^{\prime}<a / r \\
-\frac{b}{2}<z^{\prime}<b / 2
\end{array}
\end{aligned}
$$

$$
N_{\theta}=N_{\phi}=0
$$

$$
\begin{aligned}
& L_{\theta}=\iint_{x} \cdot \hat{a}_{\theta} e_{e}^{j k x \sin \theta \cos \phi} j k z \cos \theta \\
& e^{\prime} \\
&=-2 E_{0} d z^{\prime} \cos \theta \cos \phi \int_{-\frac{a}{2}}^{a / 2} e^{j k\left(\sin \theta \cos \phi+\cos \phi_{0}\right)^{*}} \int^{\frac{b}{2}} d x^{\prime} \int_{-\frac{b}{2}}^{j k z^{\prime} \cos \theta} d z^{\prime} \\
&=-2 E_{0} a \sin x \quad h \sin z
\end{aligned}
$$

$$
=-2 E_{0} a \frac{\sin x}{x} b \frac{\sin z}{z} \cos \theta \cos \phi
$$

$$
\begin{equation*}
L_{\phi}=\iint M_{x} \cdot \hat{a}_{\phi} \int_{e}^{j k\left(\sin \theta \cos \phi+\cos \phi_{0}\right) \times{ }_{e}^{\prime} j k r^{\prime} \cos \theta} d x^{\prime} \tag{13}
\end{equation*}
$$

$$
=2 E_{0} \sin \phi \quad \frac{a \sin x}{x} \quad b \frac{\sin z}{z}
$$

where $x=\frac{k a}{2}\left(\sin \theta \cos \phi+\cos \phi_{0}\right) \& z=\frac{k b}{2} \cos \theta$

$$
\begin{aligned}
& E_{\theta}=\frac{-j k e^{-j k r}}{4 \frac{j \pi r}{j-2}} L \phi=\frac{-j k a b}{2 \pi r} E_{0} e^{-j k r} \sin \phi \frac{\sin x}{x} \frac{\sin z}{2} \\
& E_{\phi}=\frac{j k e^{-j k r}}{4 \pi r} L_{\theta}=\frac{-j k a b}{2 \pi r} E_{0} \cos \theta \cos \phi \frac{\sin x \sin z}{x} e^{-j k r} \\
& H_{\theta}=\frac{-E_{\phi}}{2} \& H \phi=\frac{E_{\theta}}{2} \quad 3
\end{aligned}
$$

$$
D_{\text {pred }}=\frac{4 \pi}{\lambda^{2}} A_{\text {epfe }}, E_{a p}=100 \%
$$

$$
\text { So } D=\frac{4 \pi}{\lambda^{2}} a b
$$

Q 3
[I. (a) $b_{1}=\sqrt{2 \lambda \rho_{1}}=\sqrt{20} \lambda$ 3]

$$
\begin{equation*}
\rho_{e}=\sqrt{\rho_{1}^{2}+\left(\frac{b_{1}}{2}\right)^{2}}=10.24 \lambda \tag{3}
\end{equation*}
$$

(b) $2 \psi_{e}=2 \tan ^{-1}\left(\frac{b_{1} / 2}{\rho_{1}}\right)=25.2^{\circ}$

$$
\text { (c) } S\left(y^{\prime}\right)=\frac{1}{2} \frac{(b / 2)^{2}}{\rho_{1}}=0.25 \lambda
$$

$$
\begin{align*}
& \text { Phase }=k \delta\left(y^{\prime}\right)=\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2}=90^{\circ} \tag{3}\\
& \text { d) } D=64 a \rho_{1}
\end{align*}
$$

$$
\begin{align*}
& \text { (d) } D_{E}=\frac{64 a \rho_{1}}{\pi \lambda b_{1}}\left[c^{2}\left(\frac{b_{1}}{\sqrt{2 \rho_{1}}}\right)+s^{2}\left(\frac{b_{1}}{\sqrt{2 \lambda \rho_{1}}}\right)\right] \\
& C(1)=0.78,5(1)=0.438 \\
& D E=18.22=10 \log (18.22)=12.6 \mathrm{~dB} \tag{3}
\end{align*}
$$

(e) $A_{e m}=\frac{\lambda^{2}}{4 \pi} D_{E}=13.05 \mathrm{~cm}^{2}$
(f)

$$
\begin{aligned}
E_{a p .} & =\frac{A_{\text {etf }}}{A_{p h y}}=\frac{13.05 \times 10^{-4}}{a b_{1}}=\frac{13.05 \times 10^{-4}}{0.5\left(3 \times 10^{-2}\right)(\sqrt{20})\left(10^{-2}\right)} \\
& =64.8 \%
\end{aligned}
$$

\rightarrow directional broadside

QU
I feeding methods

1. mierostrip line 2-Coaxial probe

3 - apart wee Coupled
4-praximily Coupled

- broadest band width is proximity coupled

II parabolic reflector amplitude taper: $\frac{1}{\text { rains }^{2}}$
freq.: Microwave
focal pegion: point source
feeder: horn, aperture
Mechanical
simplicity Complex
app.

Quplinderial reflector

$$
\frac{1}{\rho}
$$

VHF
Line Sour dipole.
simp 4
T.V. broad Gating

III reflector Types :-
L- Planar
2-Corner
3-Curved
function of reflector i it reflected ware to a desired direction as to increase the total radiation intensity in Certain direction. Also to Converge or focus thy reflected beam which generated from
waves that Cmanted from the feed.
IV $f / d=0.3, d=2 \mathrm{~m}$
(a)

$$
\begin{aligned}
& \theta_{0}=\tan ^{-1}\left[\frac{\frac{1}{2}(f / d)}{(f / d)^{2}-\left(\frac{1}{16}\right)}\right]=79.6^{\circ} \\
& 2 \theta_{0}=159.2^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
G_{a_{p}} & =\left.\cot ^{2}\left(\frac{\theta_{0}}{2}\right) \int_{0}^{\theta_{f}\left(\theta^{\prime}\right)} \tan \left(\frac{\theta^{\prime}}{2}\right) d \theta^{\prime}\right|^{2} \\
x & =\int_{0}^{\theta_{0}} \cos ^{2}\left(\frac{\theta_{0}}{2}\right) \tan \left(\frac{\theta^{\prime}}{2}\right) d \theta^{\prime} \\
& =\int_{0}^{\theta_{0}} \cos \left(\frac{\theta^{\prime}}{2}\right) \sin \left(\frac{\theta^{\prime}}{2}\right) d \theta^{\prime}=\frac{1}{2} \int_{0}^{\theta_{0}} \sin \theta^{\prime} d \theta^{\prime} \\
& =\frac{x}{2} \theta_{0} \sin (\theta) \\
& =\frac{1}{2}\left(\cos \theta-\cos \theta_{0}\right)=\frac{1}{2}\left(1-\cos 79.0^{\circ}\right)
\end{aligned}
$$

So $G_{a p}=\operatorname{Cot}^{2}\left(\frac{79 \cdot 6}{2}\right) * \frac{1}{4}[1-\cos (7 a \cdot 6)]^{2}$ $=24.1 \% \% 3$
(0)

$$
\begin{aligned}
& D=\left(\frac{\pi d}{\lambda}\right)^{2} Q_{a p} \\
&= 10.6 \times 10^{3}=40.2 \mathrm{~dB}
\end{aligned}
$$

Benha University
Benha Faculty of Engineering
Date: 5 June 2017
Semester: $2^{\text {nd }}$
Examiner: Abdelhady Mahmoud
Total Points: 90

Department: Electric
Program: Undergraduate
Time: 3 hours
Subject: Waves and Antennas
Code: E1518
No. of Pages: 2

Answer All Questions

Question 1: (25 marks)

I: (a) State antenna radiation regions? Express by equations.
(b) Half-power beam width (HPBW) and its relation to directivity (approx.)?
(c) What is love principle and classify its cases?
(d) Explain the quadratic phase error effect in E-sectoral horn and how can be minimized?
(e) What are the optimal dimensions of pyramidal horn?
(f) What are the benefits of corrugation in a corrugated horn?
(g) What are the advantages of microstrip antennas?

II: Compare between array series feeding and corporate feeding?
III: Define spillover and amplitude tapering efficiencies and how can both be improved?

Question 2: (25 marks)

I. Explain briefly the cavity model analysis on the mechanism of microstrip patch radiation? Support your answer by sketches.
II. Find the $\mathrm{TM}^{\mathrm{Z}}{ }_{\text {mnp }}$ field configurations (modes) of the rectangular microstrip patch based on the geometry of Figure Q2.b. Determine:
a) Eigenvalues (β_{x}, β_{y} and β_{z})
b) Resonant frequency $\left(\mathrm{f}_{\mathrm{r}}\right) \mathrm{mnp}$ for the mnp mode. (2)
c) Dominant mode if $\mathrm{L}>\mathrm{W}>\mathrm{h}$.
(2)
d) Resonant frequency of the dominant mode.
(2)
III. A perpendicularly polarized plane wave is obliquely incident upon an aperture, with dimension a and b, on a perfectly electric conducting ground plane of infinite extent, as shown in the figure. Assuming the field over the aperture is given by the incident field. Find:
(a) Fields at aperture.

Figure Q2 C

Benha University
Benha Faculty of Engineering
Date: 5 June 2017
Semester: $2^{\text {nd }}$
Examiner: Abdelhady Mahmoud

Department: Electric
Program: Undergraduate
Time: 3 hours
Subject: Waves and Antennas
Code: E1518
No. of Pages: 2

(b) Equivalent L and N (spherical form)
(c) The far-zone spherical components of the fields for $\mathrm{y}>0$.
(d) What are the predicted directivity and aperture efficiency (without proof)?

Question 3 (19 marks)

I. Design an optimum directivity E-plane sectoral horn whose axial length is $\rho_{1}=10 \lambda$. The horn is operating at X-band with a desired center frequency 10 GHz . The waveguide feeding the horn has dimensions of 0.5λ and 0.25λ. find:
(a) Horn aperture dimensions b_{1} and ρ_{e} in wavelength.
(b) Calculate maximum total flare angle of the horn.
(c) Maximum quadratic phase.
(c) Directivity of the horn (dimensionless and in dB) (exact method).
(d) Maximum effective area.
(e) Aperture efficiency.
(f) What is the kind of radiation patterns for that horn?

Question 4 (21 marks)

I. State microstrip feeding methods and which one provides broadest bandwidth?
II. Compare between cylindrical reflector and parabolic reflector?
III. What is the main function of reflector and give some of its types?
IV. A parabolic reflector, has an f / d ratio of 0.3 with diameter of 2 m . Determine the:
(a) Total subtended angle of the reflector .
(b) Aperture efficiency assuming the feed pattern is symmetrical and its gain pattern is given by
$\mathrm{G}_{\mathrm{f}}\left(\theta^{\prime}\right)=\cos ^{4}\left(\theta^{\prime} / 2\right)$, where θ^{\prime} is measured from the axis of the reflector.
(c) Directivity of the entire system when the antenna is operating at 10 GHz , and it is illuminated by the feed pattern of part (b).

