Q1
Model answer E1312 2016/2017

$$A = e^{KZ}$$

 $x = \frac{\omega e^{K}}{2e^{K}} \sqrt{p^{K}} = 1.85 \times 10^{-4} \text{ Me/m}$
 $z = 9.72 \text{ Km} \rightarrow 3$
 $B = 72 \text{ T}$
 $\beta = \omega \sqrt{me^{K}} = 3.717 \text{ Md/m}$
 $z = 0.4225 \text{ m} \rightarrow 3$
 $C = 5 = \frac{1}{K} = 5405.4 \text{ m} \rightarrow 3$
 $C = 5 = \frac{1}{K} = 5405.4 \text{ m} \rightarrow 3$
 $B = \frac{1}{K} = 5405.4 \text{ m} \rightarrow 3$
 $B = \frac{1}{K} = \frac{1}{2}(a_{X} \times E) = \frac{1}{2}(a_{X} \times E^{K}) = 0.343 \frac{1}{2}e^{5} \frac{1}{6}a_{Y} \rightarrow 3$
 $H_{1}^{T} = -\frac{1}{2}(a_{X} \times E) = -0.133 \frac{1}{2}e^{5} \frac{1}{2}e^{5} \frac{1}{6}a_{Y} \rightarrow 3$
 $H_{1}^{T} = -\frac{1}{2}(a_{X} \times E) = -0.133 \frac{1}{2}e^{5} \frac{1}{2}e^{5} \frac{1}{6}a_{Y} \rightarrow 3$
 $C = \frac{7}{2}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-\frac{2}{3}e^{-$

() Emax = (1+ 151) Ext = (1+ 1) ×150 = 200 V/m -> (2) Emin = (1 - 151) Exo = 100 V/m -> (2) Q2 [A] - Es = lo (ây + jûz) e $b H_{s} = \frac{1}{3} \left(a_{N} \times E_{s} \right)$ $=\frac{10}{377}\left(\hat{a} \times \times \left(\hat{a} + j \hat{a} \right) - j 25 \times \right)$ = 0.026 (az - jay) -) 25x @ Pava. = 1 Re(EXH*) = 1 |E/ Cos 03 = 0.265 ax 3 [B] JK=0.2+ j2 α x = 0.2 β= 2) 2 8= 0.24j2 -> () (b) Pav = 1/2 1E/ Cos Op = 315.4 W/m2

(C)
(a)
$$5WR - \frac{2}{3!} + \frac{1}{3!2!} 2 \log \beta_2 \ln \beta_2 \ln$$

$$\begin{aligned} & \operatorname{Zine}_{q} = \operatorname{Zin}_{1} / (5 + t) 2_{0} \\ & = 7.94 + j | 9.9 \longrightarrow 1 \end{aligned}$$

$$\begin{aligned} & \Gamma = \frac{2 \operatorname{Zine}_{1} - 5_{0}}{2 \operatorname{Zine}_{1} + 5_{0}} = 0.759 | 23 \operatorname{rm}_{2} \longrightarrow 2 \end{aligned}$$

$$\begin{aligned} & \Gamma = \frac{2 \operatorname{Zine}_{1} + 5_{0}}{1 - 1 \Gamma 1} = 7.3 \longrightarrow 2 \end{aligned}$$

$$\begin{aligned} & \Gamma = \frac{1 + |\Gamma|}{1 - 1 \Gamma 1} = 7.3 \longrightarrow 2 \end{aligned}$$

$$\begin{aligned} & \Gamma = \frac{1 + |\Gamma|}{1 - 1 \Gamma 1} = 7.3 \longrightarrow 2 \end{aligned}$$

$$\begin{aligned} & \Gamma = \frac{1 + |\Gamma|}{1 - 1 \Gamma 1} = 7.3 \longrightarrow 2 \end{aligned}$$

$$\begin{aligned} & \Gamma = \sqrt{9} \frac{2 \operatorname{Zin}_{1}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{1}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{1}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{n}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{n}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{n}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Zin}_{n}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9.367} \operatorname{rm}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Lin}_{n}}{2 \operatorname{x}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9} \operatorname{ch}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\begin{aligned} & \Psi = \sqrt{9} \frac{2 \operatorname{Lin}_{n}}{2 \operatorname{sh}_{n} + 7_{0}} = 8 \operatorname{ch} \sqrt{9} \operatorname{ch}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \Psi = 45.65 \operatorname{ch}_{n} \operatorname{ch}_{n} \operatorname{sh}_{n} \operatorname{ch}_{n} \operatorname{sh}_{n} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \Psi = 45.65 \operatorname{ch}_{n} \operatorname{ch}_{n} \operatorname{sh}_{n} \operatorname{sh$$

24 IA I Z= Z = 1.2+jo.6 @ [= 0.28 (56° -> 3) € = WR = 1.8 → 2 C distance = 0-57 - 0.173 7 = 0.327 2 (J, = 0. 687 - jo.33 Yin, = 1+ 1 0.57 Yin, =1-10-57 T.L length = T.L. length = 0.1472-0.4232+0.52 = 0. 4292 - 9 (2.5) 0.C. stub [-jo.57], 0.C. stub (jo.57] =0-083 X 50.4172 -> 2.5 5.C. stub [-jo.57] 5.c. stub [jo 57] =0.417 > -0.25> = 0.1672 - 5 = 0.0832 +0.252 =0.3337 $\begin{bmatrix} B \end{bmatrix} R_g = T_o, V_{in} = \frac{1}{2} V_o$ $\Gamma_{L} = \frac{R_{L} - Z_{0}}{R_{L} + Z_{0}} = 1 \longrightarrow \bigcirc$ rg = Rg - Zo Rg + Zo = 0 - 3 (D)

Department: Electric Program: Undergraduate Time: 3 hours Subject: Transmission line **Code: E1312** No. of Pages: 2

(3)

Answer All Questions

Question *O* (28 marks)

A-	A 150 MHz uniform plane	wave having	amplitude	E _o and	d propagate	ed in +ve z	dire	ction
	vithin a lossy dielectric having	$\epsilon_{\rm r} = 1.4, \ \mu_{\rm r} = 1$	and $\frac{\sigma}{\omega\epsilon} =$	10 ⁻⁴ .	How many	meters car	the v	wave
1	ravel in the dielectric before :							
(a) Its $ E(z) = 0.5^* E_0$							(3)
(b) Phase shifted by 90° related	to $z = 0$ positi	on					(3)

- (b) Phase shifted by 90° related to z = 0 position
- (c) Depth of penetration
- B- Region z < 0, is characterized by $\epsilon'_r = \mu_r = 1$ and $\epsilon''_r = 0$. The total E field here is given as two components, $E_1^+ = 150 \ e^{-j10z} a_x$ and $E_1^- = 50 \ e^{j10z} e^{j20} a_x \ V/m$.

Find	a) ω	(2)
	b) Reflection coefficient (Γ) amplitude and phase	(2)
	b) H_1^+ and H_1^-	(4)
	c) Intrinsic impedance for region $z > 0$ that provides the appropriate reflected wave.	
	d) The transmitted wave E_2^+	(2)
	e) Positions of first maximum and minimum at region $z < 0$	
	f) Maximum and minimum values of electric field at region $z < 0$	(4)
0		

Question @ (25 marks)

- A- The electric field of a uniform plane wave in free space is given by $E_s = 10 (a_y + j a_z) e^{-j25x}$ (a) Determine the frequency, f(3)(3)
 - (b) Find the magnetic field phasor, H_s

(c) Calculate the average power.

B- Let jk = 0.2+j2 m⁻¹ and $\eta = 250+j30$ Ω for a uniform plane propagating in the +ve a_z direction within a dielectric material having some finite conductivity. If $|E_s| = 400$ V/m at z = 0.

Find:

(a) α , β and γ

(b) P_{av} (average power) at z = 0

€r3=9

(3)

C- The given three regions are all lossless and nonmagnetic, where the incident wave frequency is 750 MHz. (a) Find the standing-wave ratio for wave in the region 1 when $d_2 = 5$ cm. (5)(b) Suggest a matching technique for layer 2 (ε_{r2} unknown) where the wave has no reflection in region 1. Assume d2=5 cm

Question 3 (13 marks)

In Fig. Q.3, a lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The line parameters are $L = 0.2 \mu$ H/m and C = 80 pF/m. The line is terminated by a short circuit at z = 0, and there is a load, $Z_L = 50 + j20$ Ω across the line at location z = -20 cm. What is the reflection, VSWR (standing wave ratio), voltage at Z_L (incident and reflected) (amplitude and

Department: Electric Program: Undergraduate Time: 3 hours Subject: Transmission line Code: E1312 No. of Pages: 2

(3)

(2)

(4)

phase) and the average delivered power to Z_L if the source has an input voltage $100 \ge 0^\circ$ V with Zg = 50 Ω ?

Fig. Q.3

Question @ (24 marks)

A- A lossless 50 Ω transmission line operates with velocity 0.8*C* where $C = 3 \times 10^8$ m/s and *f* = 300 MHz and terminated by a load Z_L= 60 + j 30 Ω located at z = 0.

Use smith chart to find:

- (a) Amplitude and angle of reflection coefficient.
- (b)SWR
- (c) The distance from the load to the nearest voltage minimum (per wavelength). (2)
- (d)The lengths of transmission line and open-circuit stubs (shortest length) for matching load with transmission line. (5)
- (e) The lengths of transmission line and short-circuit stubs (shortest length) for matching load with transmission line. (5)
- B-In Fig. Q.4B, there is ½ V_o initial voltage stored in transmission line before switch is on. The transmission line has an open terminated end, i.e., $R_L = \infty$ while $R_g = Z_o$. The line has $Z_o = 50 \Omega$. For the time period 0 < t < 2L/v, plot
 - a) Voltage and current reflection diagram as function of V_0 . (3)
 - b) The line voltage at L/4 as function of V_o.

Fig. Q.4B

My Wishes for all,