نموذج أسئلة و اجابة مادة الاقتصاد الهندسى م561

Benha University College of Engineering at Benha Questions For Final Examination Time : $\mathbf{1 2 0} \mathbf{m i n}$.
Subject: Engineerin Economy M 561 January/23/ 2019
Fifth year Structural and production engineering Examiner:Dr.Moh amed Elsharnoby

1. An investor can make three year-end payments of $\$ 15,000$, which generates receipts of $\mathbf{\$ 1 0 , 0 0 0}$ at the end of year 4 , that will increase annually by $\$ 2500$ for the following 4 years. If the investor can earn a rate of return of 10 percent on alternative 8 -year investments, is this alternative attractive?

$$
\begin{array}{lllll}
\$ 10000 & 12500 & 15000 & 17500 & 20000
\end{array}
$$

(8 points)
2-If you get a loan (L)from a bank which should be repaid as a series of payments (shown in figure)- $\$ 10,000$ at the end of each of the first five years, $\$ 9,000$, at the end of the ${ }^{\text {th }}$ year, $\$ 8,000$, at the end of the $7^{\text {th }}$ year, $\$ 7,000$, at the end of the $8^{\text {th }}$ year, $\$ 6,000$, at the end of the $9^{\text {th }}$ and $\$ 5,000$, at the end of the $10^{\text {th }}$. What is the amount of the loan you obtained if the bank gets 10% interest rate:
i) compounded annually, ii) compounded monthly, iii) compounded continuously?

3- Three mutually exclusive alternative public works projects are currently under consideration. Their respective costs and benefits are included in th table below. Each of the projects has a useful life of $\mathbf{5 0}$ years, and the interest rate is $\mathbf{1 0 \%}$ per year. Which if any of these projects should be selected?

	Alternative		
	\mathbf{A}	B	\mathbf{C}
Capital investment	$\$ 8,500,000$	$\$ 10,000,000$	$\$ 12,000,000$
Annual oper. \&maint costs	$\mathbf{7 5 0 , 0 0 0}$	$\mathbf{7 2 5 , 0 0 0}$	$\mathbf{7 0 0 , 0 0 0}$
Salvage value	$\mathbf{1 , 2 5 0 , 0 0 0}$	$\mathbf{1 , 7 5 0 , 0 0 0}$	$\mathbf{2 , 0 0 0 , 0 0 0}$
Annual benefits	$\mathbf{2 , 1 5 0 , 0 0 0}$	$\mathbf{2 , 2 6 5 , 0 0 0}$	$\mathbf{2 , 5 0 0 , 0 0 0}$

4)-A large heat treating oven (with appurtenances) for powder-coating automobile frames and large pieces of furniture was purchased for $\mathbf{\$ 6 0 , 0 0 0}$.The estimated operating costs, maintenance costs, and salvage values are shown below.

Year	Operating Cost,$\$$	Maintenance Cost, $\$$	Salvage $\mathbf{\$}$
1	$--15,000$	$-\mathbf{3 0 0 0}$	$\mathbf{3 5 . 0 0 0}$
2	$-17,000$	$-\mathbf{3 0 0 0}$	$\mathbf{3 0 . 0 0 0}$
3	$-19,000$	-3000	$\mathbf{2 5 . 0 0 0 0}$
4	$-21,000$	-3000	$\mathbf{2 0 , 0 0 0}$
5	$-23,000$	-3000	$\mathbf{1 5 , 0 0 0}$

Assuming the interest rate is 10%, determine:
i) The economic service life and the associated annual worth
ii) Determine the marginal total cost of the oven.

5. Consider the following two investment alternatives.		
	Alternative A	
	Alternative B	
Initial Investment	$\$ 20,000$	$\$ 10,000$
Service Life	5 years	5 years
Salvage Value	0	0
Depreciation method	SL	SL
Estimated operating costs and revenues (profits).		

		End of Year				
		1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Alternative	Operating cost	$\$ 10,000$	$\$ 10,500$	$\$ 11,000$	$\$ 12,000$	$\$ 14,000$
A	Revenue(profit)	$\mathbf{1 5 , 0 0 0}$	$\mathbf{1 5 , 9 0 0}$	$\mathbf{1 7 , 0 0 0}$	$\mathbf{1 7 , 5 0 0}$	$\mathbf{9 , 0 0 0}$
Alternative	Operating cost	$\mathbf{\$ 1 , 2 0 0}$	$\$ 1,000$	$\$ 1,500$	$\$ 1,300$	$\$ \mathbf{1 , 2 0 0}$
B	Revenue(profit)	$\mathbf{4 , 2 0 0}$	$\mathbf{4 , 0 0 0}$	$\mathbf{4 , 5 0 0}$	$\mathbf{4 , 3 0 0}$	$\mathbf{4 , 2 0 0}$

If the tax rate is $\mathbf{3 0 \%}$
For the actual dollar cash flow given above find the after tax ROR for alternative B when an average inflation rate of 7% is considered.
Which alternative is more attractive to undertake when the effective tax rate is only considered (no inflation) ? (12 points)
6) The annual maintenance costs of an electric pump this year are estimated to be $\mathbf{\$ 1 , 8 0 0}$. Since the level of maintenance is expected to be the same in the future, these costs will be constant, assuming no inflation. If the pump's life is predicted to be 13 years, find the present equivalent of its maintenance costs when the annual inflation rate is $\mathbf{9 \%}$ and the annual market rate is $\mathbf{1 2 \%}$. Solve using:
i) Geometric gradient.
ii) Constant-dollar analysis.

> GOOOD L U C K

Note: A table of formulae are on the back of the questions if you need.

Single Payment formulas:

Compound amount:
Present worth:

$$
\begin{gathered}
\mathbf{F}=\mathbf{P}(\mathbf{1 + i})^{\mathbf{n}}=\mathbf{P}(\mathbf{F} / \mathbf{P}, \mathbf{i}, \mathbf{n}) \\
\mathbf{P}=\mathbf{F}(\mathbf{1 + i})^{-\mathbf{n}}=\mathbf{F}(\mathbf{P} / \mathbf{F}, \mathbf{i}, \mathbf{n})
\end{gathered}
$$

Uniform Series Formulas:
Compound Amount: F
Sinking Fund:
$=\mathbf{A}\left\{\left[(1+\mathbf{i})^{\mathbf{n}}-1\right] / \mathbf{i}\right\} \quad=\mathrm{A}(\mathbf{F} / \mathbf{A}, \mathbf{i}, \mathrm{n})$
Capital Recovery
$A \quad=P\left\{\left[i(1+i)^{n}\right] /\left[(1+i)^{n}-1\right]=P(A / P, i, n)\right.$
Present Worth: $\mathbf{P}=\mathbf{A}\left\{\left[(1+i)^{\mathbf{n}}-1\right] /\left[\mathbf{i}(1+i)^{n}\right]\right\}=A(P / A, i, n)$

- Arithmetic Gradient Formulas:

Present Worth $P=G\left\{\left[(1+i)^{n}-i n-1\right] /\left[i^{2}(1+i)^{n}\right]\right\}=G(P / G, i, n)$
Uniform Series $A=G\left\{\left[(1+i)^{\mathbf{n}}-\mathbf{i} \mathbf{n}-1\right] /\left[\mathbf{i}(1+\mathbf{i})^{\mathbf{n}}-\mathbf{i}\right]\right\}=G(A / G, i, n)$

- Geometric Gradient Formulas:
- Nominal interest rate per year, r : the annual interest rate without considering the effect of any compounding
- Effective interest rate per year, i_{a} : $i_{a}=(1+r / m)^{m}-1=(1+i)^{m}-1$ with $i=r / m$
- Continuous compounding,
\mathbf{r} - one-period interest rate, \mathbf{n} - number of periods

$$
(\mathbf{P} / \mathbf{F}, \mathbf{r}, \mathbf{n})^{\text {inf }}=\mathbf{e}^{-\mathrm{rn}}
$$

$$
(\mathbf{F} / \mathbf{P}, \mathbf{r}, \mathbf{n})^{\text {inf }}=\mathbf{e}^{\mathrm{rn}}
$$

$$
\begin{aligned}
& \text { If } \mathbf{i} \neq \mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left\{\left[1-(1+\mathbf{g})^{\mathbf{n}}(\mathbf{1}+\mathbf{i})^{-\mathbf{n}}\right] /(\mathbf{i}-\mathrm{g})\right\} \quad=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathrm{n}) \\
& \text { If } \mathbf{i}=\mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left[\mathbf{n}(\mathbf{1}+\mathbf{i})^{-1}\right] \quad=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathbf{n})
\end{aligned}
$$

نموذج الاجابـة المـادة :اقتصاد هندسى م 561 الغرقةة الخامسة جميع التخصصات

التّاريخ الأربعاء 23 يناير 2019
 أستاذ المادة : د. محمد عبد اللطيف الثرنوبى

PROPLEM 1

1. An investor can make three year-end payments of $\$ 15,000$, which generates receipts of $\$ 10,000$ at the end of year 4 , that will increase annually by $\$ 2500$ for the following 4 years. If the investor can earn a rate of return of 10 percent on alternative 8 -year investments, is this alternative attractive?

$\mathbf{N P W}=-\mathbf{1 5 0 0 0}(\mathrm{P} / \mathrm{A}, \mathbf{1 0 \%}, \mathbf{3})+[10000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+2500(\mathrm{P} / \mathrm{G}, 10 \%, 5)](\mathrm{P} / \mathrm{F}, 10 \%, 3)$,
$=-15000 * 2.4869+(10000 * 3.7908+2500 * 6.8618) * 0.7513$
NPW $=\mathbf{- 3 7 3 0 3 . 5}+(\mathbf{3 7 9 0 8}+\mathbf{1 7 1 5 4 . 5)} * \mathbf{0 . 7 5 1 3}=\$ 4135$
Then the rate of return is greater than 10%
this alternative is attractive

2-If you get a loan (L)from a bank which should be repaid as a series of payments (shown in figure) - $\$ 10,000$ at the end of each of the first five years, $\$ 9,000$, at the end of the ${ }^{\text {th }}$ year, $\$ 8,000$, at the end of the $7^{\text {th }}$ year, $\$ 7,000$, at the end of the $8^{\text {th }}$ year, $\$ 6,000$, at the end of the $9^{\text {th }}$ and $\$ 5,000$, at the end of the $10^{\text {th }}$. What is the amount of the loan you obtained if the bank gets $\mathbf{1 0 \%}$ interest rate:
i) compounded annually, ii) compounded monthly, iii) compounded continuously?

i) compounded annually,
$\mathrm{L}=10000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+[9000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-1000(\mathrm{P} / \mathrm{G}, 10 \%, 5)](\mathrm{P} / \mathrm{F}, 10 \%, 5)$
$\mathrm{L}=10000 * 3.7908+(9000 * 3.7908-1000 * 6.8618) * 0.6209$
$\mathrm{L}=37908+(34117.2-6861.8) * 0.6209$
$\mathrm{L}=\$ 54830.88$
ii) Compound monthly

Use the formula to find (P/A, $\left.\mathrm{i}_{\mathrm{eff}} \%, 5\right)$, ($\left.\mathrm{P} / \mathrm{G}, \mathrm{i}_{\mathrm{eff}} \%, 5\right) .,\left(\mathrm{P} / \mathrm{F}, \mathrm{i}_{\mathrm{eff}} \%, 5\right)$.
$\mathrm{I}_{\mathrm{eff}}=(1+10 / 12)^{12}-1=0.104713$

Present Worth: $\mathbf{P}=\mathbf{A}\left\{\left[(1+\mathbf{i})^{\mathrm{n}}-\mathbf{1}\right] /\left[\mathbf{i}(\mathbf{1}+\mathbf{i})^{\mathrm{n}}\right]\right\} \quad=\mathrm{A}(\mathbf{P} / \mathbf{A}, \mathbf{i}, \mathbf{n})$
(P/A,i,n) $=3.74558$
Present Worth $P=G\left\{\left[(1+i)^{n}-i n-1\right] /\left[i^{2}(1+i)^{n}\right]\right\}=G(P / G, i, n)$
$(\mathrm{P} / \mathrm{G}, \mathrm{i}, \mathrm{n})=6.74834$
Present worth:

$$
\mathbf{P}=\mathbf{F}(\mathbf{1}+\mathbf{i})^{-\mathbf{n}}=\mathbf{F}(\mathbf{P} / \mathbf{F}, \mathbf{i}, \mathbf{n})
$$

$(\mathbf{P} / \mathbf{F}, \mathbf{i}, \mathbf{n})=\mathbf{0 . 6 0 7 7 8 8}$
$\mathrm{L}=10000 * 3.74558+(9000 * 3.74558-1000 * 6.748343) * 0.60778859$
$\mathrm{L}=37455.8+(33710.2-6748.3) * 0.6077886$
$\mathrm{L}=\$ 53842.9$
iii) compounded continuously
$\mathrm{i}_{\text {eff }}=0.1051709$
Present Worth: $\mathbf{P}=\mathbf{A}\left\{\left[(1+\mathbf{i})^{\mathrm{n}}-\mathbf{1}\right] /\left[\mathbf{i}(\mathbf{1}+\mathbf{i})^{\mathrm{n}}\right]\right\} \quad=\mathrm{A}(\mathbf{P} / \mathbf{A}, \mathbf{i}, \mathbf{n})$
$(\mathbf{P} / \mathrm{A}, \mathbf{i}, \mathrm{n})=3.741238$
Present Worth $\mathbf{P}=\mathbf{G}\left\{\left[(\mathbf{1 + i})^{\mathbf{n}}-\mathbf{i n}-\mathbf{1}\right] /\left[\mathrm{i}^{\mathbf{2}}(\mathbf{1 + i})^{\mathrm{n}}\right]\right\}=G(\mathbf{P} / \mathbf{G}, \mathbf{i}, \mathbf{n})$
$(\mathrm{P} / \mathrm{G}, \mathrm{i}, \mathrm{n})=6.737457$
Present worth:

$$
\mathbf{P}=\mathbf{F}(\mathbf{1}+\mathbf{i})^{-\mathbf{n}}=\mathbf{F}(\mathbf{P} / \mathbf{F}, \mathbf{i}, \mathbf{n})
$$

(P/F,i,n) = 0.60653
$\mathrm{L}=10000 * 3.741238+(9000 * 3.741238-1000 * 6.737457) * 0.60653$
$\mathrm{L}=37412.8+(33671.1-6737.5) * 0.60653$
$\mathrm{L}=\$ 53748.8$

3- Three mutually exclusive alternative public works projects are currently under consideration. Their respective costs and benefits are included in th table below. Each of the projects has a useful life of $\mathbf{5 0}$ years, and the interest rate is $\mathbf{1 0 \%}$ per year. Which if any of these projects should be selected?

Alternative

	\mathbf{A}	\mathbf{B}	\mathbf{C}
Capital investment	$\mathbf{\$ 8 , 5 0 0 , 0 0 0}$	$\mathbf{\$ 1 0 , 0 0 0 , 0 0 0}$	$\mathbf{\$ 1 2 , 0 0 0}, \mathbf{0 0 0}$
Annual oper. \&maint costs	$\mathbf{7 5 0 , 0 0 0}$	$\mathbf{7 2 5 , 0 0 0}$	$\mathbf{7 0 0 , 0 0 0}$
Salvage value	$\mathbf{1 , 2 5 0 , 0 0 0}$	$\mathbf{1 , 7 5 0 , 0 0 0}$	$\mathbf{2 , 0 0 0 , 0 0 0}$
Annual benefits	$\mathbf{2 , 1 5 0 , 0 0 0}$	$\mathbf{2 , 2 6 5 , 0 0 0}$	$\mathbf{2 , 5 0 0 , 0 0 0}$

3-We shall calculate the equivalent annual cos and benefits of each
For alternative A
EACA $=8,500,000 \times(\mathbf{A} / \mathbf{P}, 10 \%, 50)+\mathbf{7 5 0 , 0 0 0}=8,500,000 \times 0.1009+\mathbf{7 5 0 , 0 0 0}=\$ 1,607,650$
EABA $=\mathbf{1 , 2 5 0 , 0 0 0 x}(\mathbf{A} / \mathbf{F}, 10 \%, 50)+\mathbf{2 . 1 5 0 , 0 0 0}=\mathbf{1 , 2 5 0 , 0 0 0} \times 0.0009+\mathbf{2 . 1 5 0 , 0 0 0 = \$ 2 1 5 1 1 2 5}$
Benfit/cost ratio of $A=2151125 / \mathbf{1 , 6 0 7 , 6 5 0}=\mathbf{1 . 3 3 8 0 5 5 5}$
For alternative B
$\mathbf{E A C B}=10,000,000 \times(\mathbf{A} / \mathbf{P}, \mathbf{1 0 \%}, 50)+\mathbf{7 5 0 , 0 0 0}=\mathbf{1 0 , 0 0 0 , 0 0 0 x} 0.1009+\mathbf{7 2 5}, 000=\$ 1734000$
$\mathbf{E A B A}=\mathbf{1 , 2 5 0 , 0 0 0} \times(\mathbf{A} / \mathbf{F}, 10 \%, 50)+\mathbf{2 . 1 5 0 , 0 0 0 = 1 , 7 5 0 , 0 0 0 \times} 0.0009+\mathbf{2 . 2 6 5 , 0 0 0 = \$ 2 2 6 6 5 7 5}$
Benfit/cost ratio of $B=\mathbf{2 2 6 6 5 7 5} / \mathbf{1 7 3 4 0 0 0}=\mathbf{1 . 3 0 7 1 3 6 7}$
For alternative C
EACC=12,000,000x(A/P,10\%,50)+700,000 =12,000,000x $0.1009+\mathbf{7 0 0 , 0 0 0 = \$ 1 , 9 1 0 , 8 0 0}$
EABC=2,000,000x(A/F,10\%,50)+2.500,000=2,000,000x $0.0009+\mathbf{2 . 5 0 0 , 0 0 0 = \$ 2 5 0 1 8 0 0}$
Benfit/cost ratio of $\mathbf{C}=\mathbf{2 5 0 1 8 0 0} / \mathbf{1 , 9 1 0 , 8 0 0}=\mathbf{1 . 3 0 9 2 9 4 5}$
The best alternative is A
4)-A large heat treating oven (with appurtenances) for powder-coating automobile frames and large pieces of furniture was purchased for $\$ 60,000$. The estimated operating costs, maintenance costs, and salvage values are shown below.

Year	Operating Cost, $\$$	Maintenance Cost,\$	Salvage $\$$	Value,
1	$--15,000$	-3000	$\mathbf{3 5 . 0 0 0}$	
2	$-17,000$	-3000	$\mathbf{3 0 . 0 0 0}$	
3	$-\mathbf{- 1 9 , 0 0 0}$	-3000	$\mathbf{2 5 . 0 0 0 0}$	
4	$-21,000$	-3000	$\mathbf{2 0 , 0 0 0}$	
5	$-23,000$	-3000	$\mathbf{1 5 , 0 0 0}$	

Assuming the interest rate is $\mathbf{1 0 \%}$, determine:
i) The economic service life and the associated annual worth
ii) Determine the marginal total cost of the oven.

Solution

The total Marginal cost

Year	Market value	Loss in Market value	Foregone interest	$\begin{gathered} \text { Operati } \\ \text { ng } \\ \text { Cost, } \$ \\ \hline \end{gathered}$	Maintenance Cost $\$$	Salvage Value, \$	Total Recovery Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	--15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	--\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	--\$33000

The life cost of one year is 49000
The EUAC for two years is $=(49000+28500 /(1+\mathrm{i})) *(\mathrm{~A} / \mathrm{P}, 10 \%, 2)=(49000+28500 /(1+\mathrm{i})) * 5762=(49000$ +25909)*0.5762=-\$43162.6
The EUAC for three years is $\left.=\left(49000+28500 /(1+i)+30000 *(1+i)^{-2}\right) * A / P, 10 \%, 3\right)=(49000+25909+$ 24793.3)*0.4021=-\$40090.3

The EUAC for four years is $\left.=\left(49000+28500 /(1+\mathrm{i})+30000 *(1+\mathrm{i})^{-2}\right) *+31500 *(1+\mathrm{i})^{-3}\right)(\mathrm{A} / \mathrm{P}, 10 \%, 4)=$ $(49000+25909+24793.3+23666.3) * 0.3155=-\$ 38922$
The EUAC for five years is $\left.=\left(49000+28500 /(1+\mathrm{i})+30000 *(1+\mathrm{i})^{-2}\right) *+31500 *(1+\mathrm{i})^{-3}+33000 *(1+\mathrm{i})^{-4}\right)($
$\mathrm{A} / \mathrm{P}, \mathbf{1 0 \%}, \mathbf{5})=(\mathbf{4 9 0 0 0}+\mathbf{2 5 9 0 9}+\mathbf{2 4 7 9 3 . 3}+\mathbf{2 3 6 6 6 . 3}+\mathbf{2 2 5 3 9 . 4}) * 0.2638=-\$ 38409$
Economic life is 5 years

Year	Market value	EUAC of Capital recovery	Foregone interest	Operati ng Cost,\$	Maintenance Cost,\$	Salvage Value, \$	Total Recovery Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	--15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	--\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	--\$33000

For one year
EUAC of Capital recovery for one year $=-\$ 60000 *(A / P, 10 \%, 1)+\$ 35000 *(A / F, 10 \%, 1)$
$=-\$ 66000+\$ 35000=-\$ 31000$
EUAC of Capital recovery for two years $=-\$ 60000^{*}(\mathrm{~A} / \mathrm{P}, \mathbf{1 0 \%}, 2)+\$ 30000^{*}(\mathrm{~A} / \mathrm{F}, \mathbf{1 0 \%}, \mathbf{2})$
$=-\$ 60000 * 0.5762+\$ 30000 * 0.476=-\$ 20292$
EUAC of Capital recovery for three years $=-\$ 60000 *(A / P, 10 \%, 3)+\$ 25000 *(A / F, 10 \%, 3)$
$=-\$ 60000 * 0.4021+\$ 25000^{*} \quad 0.3021=-\$ 16573.5$
EUAC of Capital recovery for four years $=-\$ 60000 *(A / P, 10 \%, 4)+\$ 20000 *(A / F, 10 \%, 4)$
$=-\$ 60000 * 0.3155+\$ 20000 * 0.2155=-\$ 14620$
EUAC of Capital recovery for five years $=-\$ 60000 *(A / P, 10 \%, 5)+\$ 15000 *(A / F, 10 \%, 5)$
$=-\$ 60000 * 0.2638+\$ 15000 * \quad 0.1638=-\$ 13371$

Year	Market value	EUAC of Capital recovery	Operati ng Cost, $\$$	Maintenance Cost, $\$$	Total EUAC
0	$\$ 60000$				
1	35.000	$-\$ 31000$	$--15,000$	-3000	$-\$ 49000$
2	30.000	$-\$ 20292$	$-17,000$	-3000	$-\$ 40292$
3	25.0000	$-\$ 16573.5$	$-19,000$	-3000	$--\$ 38573$
4	20,000	$-\$ 14620$	$-21,000$	-3000	$-\$ 38620$
5	15,000	$-\$ 13371$	$-23,000$	-3000	$-\mathbf{- \$ 3 9 3 9 1}$

Year	Market value	EUAC of Capital recovery	EUAC OP cost,\$	Maintenance Cost,\$	Total EUAC
0	$\$ 60000$				
1	35.000	$-\$ 31000$	$--15,000$	-3000	$-\$ 49000$
2	30.000	$-\$ 20292$	$-15,932.4$	-3000	$-\$ 39224.4$
3	25.0000	$-\$ 16573.5$	-16873.2	-3000	$--\$ 36446.7$
4	20,000	$-\$ 14620$	-17636	-3000	$-\$ 35256$
5	15,000	$-\$ 13371$	-18620	-3000	$-\mathbf{\$ 3 4 9 9 1}$

Economic life is 5 years
(10 points)
5. Consider the following two investment alternatives.

	Alternative A	Alternative B
Initial Investment	$\$ 20,000$	$\$ 10,000$
Service Life	5 years	5 years
Salvage Value	0	0
Depreciation method	SL	SL
Estimated operating costs and revenues (profits).		

		End of Year				
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Alternative	Operating cost	$\mathbf{\$ 1 0 , 0 0 0}$	$\mathbf{\$ 1 0 , 5 0 0}$	$\$ 11,000$	$\$ \mathbf{1 2 , 0 0 0}$	$\$ 14,000$
A	Revenue(profit)	$\mathbf{1 5 , 0 0 0}$	$\mathbf{1 5 , 9 0 0}$	$\mathbf{1 7 , 0 0 0}$	$\mathbf{1 7 , 5 0 0}$	$\mathbf{9 , 0 0 0}$
Alternative	Operating cost	$\$ \mathbf{1 , 2 0 0}$	$\mathbf{\$ 1 , 0 0 0}$	$\$ 1,500$	$\$ 1,300$	$\$ 1,200$
B	Revenue(profit)	$\mathbf{4 , 2 0 0}$	$\mathbf{4 , 0 0 0}$	$\mathbf{4 , 5 0 0}$	$\mathbf{4 , 3 0 0}$	$\mathbf{4 , 2 0 0}$

If the tax rate is 30%
For the actual dollar cash flow given above find the after tax ROR for alternative B when an average inflation rate of 7% is considered.
Which alternative is more attractive to undertake when the effective tax rate is only considered (no inflation)?
(12 points)
Solution
We construct the following table for alternative B.
The net cash received should be the difference between the annual revenue and operating cost
Using the straight line depreciation
SL depreciation $=(10000) / 5=\$ 2000$ per year.
Constructing the table representing the cash flow before and after taxes as the following:

Year	CF before taxes	SL Depr.	Taxable Inc.	Tax (30\%)	CF after taxes
	(\mathbf{a})	$\mathbf{(b)}$	$(\mathbf{c})=(\mathbf{a})-$ $($ b) $)$	$(\mathbf{d})=-$ $40 \%(\mathbf{c})$	$(\mathbf{(a) + (d)}$
0	$-\$ 10,000$				$-\mathbf{\$ 1 0 , 0 0 0}$
1	$\mathbf{3 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{- 3 0 0}$	$\mathbf{2 7 0 0}$
2	$\mathbf{3 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{- 3 0 0}$	$\mathbf{2 7 0 0}$

3	$\mathbf{3 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{- 3 0 0}$	2700
4	$\mathbf{3 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{- 3 0 0}$	$\mathbf{2 7 0 0}$
5	$\mathbf{3 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{- 3 0 0}$	$\mathbf{2 7 0 0}$

To determine the IRR ,it is so easy here as the annual receipts are constant so we have
$(\mathrm{A} / \mathrm{P}, \mathrm{i}, 5)=2700 / 10000=0.27$. From tables $(\mathrm{A} / \mathrm{P}, 11,5)=0.2706,(\mathrm{~A} / \mathrm{P}, 10,5)=0.2638$
Then IRR after tax $=10.9 \%$
Before Tax ROR I = 15.3%
After tax and include 6% inflation rate is considered then the real interest rate is

$$
i^{\prime}=\frac{i-f}{1+f}=4.62 \%
$$

We construct the following table for alternative A .
The net cash received should be the difference between the annual revenue and operating cost
Using the straight line depreciation
SL depreciation $=(20000) / 5=\$ 4000$ per year.
Constructing the table representing the cash flow before and after taxes as the following:

Year	CF before taxes	SL Depr.	Taxable Inc.	Tax (40\%)	CF after taxes
	(a)	(b)	$(\mathbf{c})=(\mathbf{a})-$ (b)	$\begin{gathered} \hline(\mathrm{d})=- \\ \mathbf{3 0 \%}(\mathrm{c}) \\ \hline \end{gathered}$	(a) + (d)
0	-\$20,000				-\$20,000
1	5000	4000	1000	-300	4700
2	5400	4000	1400	-420	4980
3	6000	4000	2000	-600	5400
4	5500	4000	1500	-450	5050
5	5000	4000	1000	-300	4700

To determine the IRR, it is so obvious that the maximum net profit after tax is 5400 , so the ($\mathrm{A} / \mathrm{P}, \mathrm{i}, 5$) $\prec 0.27$ consequently $\mathrm{i} \prec 10.9 \%$. Choose alternative B.
6) The annual maintenance costs of an electric pump this year are estimated to be $\mathbf{\$ 1 , 8 0 0}$. Since the level of maintenance is expected to be the same in the future, these costs will be constant, assuming no inflation. If the pump's life is predicted to be 13 years, find the present equivalent of its maintenance costs when the annual inflation rate is $\mathbf{9 \%}$ and the annual market rate is $\mathbf{1 2 \%}$. Solve using:
i) Geometric gradient.
ii) Constant-dollar analysis.

Solution

6- Using the geometric gradient with real factor $=(1+i) /(1+f)$
If $\mathbf{i} \neq \mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left\{\left[1-(1+\mathbf{g})^{\mathbf{n}}(1+\mathbf{i})^{-\mathbf{n}}\right] /(\mathbf{i}-\mathbf{g})\right\}=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathbf{n})$
$P=1800 * 9.9132-=-17843.8=1800 * 1.12=\$ 19450$
i) Constant dollar $\mathrm{i}=(\mathrm{i}-\mathrm{f}) /(1+\mathrm{f})=2.75229 \%$
Present Worth: $\mathbf{P}=\mathbf{A}\left\{\left[(1+i)^{\mathrm{n}}-1\right] /\left[\mathbf{i}(1+\mathbf{i})^{\mathrm{n}}\right]\right\} \quad=\mathrm{A}(\mathbf{P} / \mathbf{A}, \mathbf{i}, \mathrm{n})$

