Benha University
Benha Faculty of Engineering
Electrical Engineering and Circuit Analysis(a) (E1101)
Dr.Wael Abdel-Rahman Mohamed

Exam with model answer

Question (1): [8 Marks]

Find the equivalent resistance $\boldsymbol{R}_{\boldsymbol{a} \boldsymbol{b}}$ in the circuit in Fig. 1

Fig. 1
Convert the upper delta to a wye.

$$
\begin{aligned}
& R_{1}=\frac{(50)(50)}{200}=12.5 \Omega \\
& R_{2}=\frac{(50)(100)}{200}=25 \Omega \\
& R_{3}=\frac{(100)(50)}{200}=25 \Omega
\end{aligned}
$$

Convert the lower delta to a wye.

$$
\begin{aligned}
& R_{4}=\frac{(60)(80)}{200}=24 \Omega \\
& R_{5}=\frac{(60)(60)}{200}=18 \Omega \\
& R_{6}=\frac{(80)(60)}{200}=24 \Omega
\end{aligned}
$$

Now redraw the circuit using the wye equivalents.

Question (2): [12 Marks]

Use the node voltage method to find the power developed by the 20 V source in the circuit in Fig. 2

Fig. 2

Node equations:
$\frac{v_{1}}{20}+\frac{v_{1}-20}{2}+\frac{v_{3}-v_{2}}{4}+\frac{v_{3}}{80}+3.125 v_{\Delta}=0$
$\frac{v_{2}}{40}+\frac{v_{2}-v_{3}}{4}+\frac{v_{2}-20}{1}=0$
Constraint equations:
$v_{\Delta}=20-v_{2}$
$v_{1}-35 i_{\phi}=v_{3}$
$i_{\phi}=v_{2} / 40$

Solving, $v_{1}=-20.25 \mathrm{~V} ; \quad v_{2}=10 \mathrm{~V} ; \quad v_{3}=-29 \mathrm{~V}$
Let i_{g} be the current delivered by the 20 V source, then
$i_{g}=\frac{20-(20.25)}{2}+\frac{20-10}{1}=30.125 \mathrm{~A}$
$p_{g}($ delivered $)=20(30.125)=602.5 \mathrm{~W}$

Question (3): [8 Marks]

Use the mesh-current method to find the total power developed in the circuit in Fig. 3

Mesh equations:
$10 i_{\Delta}-4 i_{1}=0$
$-4 i_{\Delta}+24 i_{1}+6.5 i_{\Delta}=400$

Solving, $i_{1}=15 \mathrm{~A} ; \quad i_{\Delta}=16 \mathrm{~A}$
$v_{20 \mathrm{~A}}=1 i_{\Delta}+6.5 i_{\Delta}=7.5(16)=120 \mathrm{~V}$
$p_{20 \mathrm{~A}}=-20 v_{20 \mathrm{~A}}=-(20)(120)=-2400 \mathrm{~W}(\mathrm{del})$
$p_{6.5 i_{\Delta}}=6.5 i_{\Delta} i_{1}=(6.5)(16)(15)=1560 \mathrm{~W}(\mathrm{abs})$

Therefore, the independent source is developing 2400 W , all other elements are absorbing power, and the total power developed is thus 2400 W .

CHECK:

$p_{1 \Omega}=(16)^{2}(1)=256 \mathrm{~W}$
$p_{5 \Omega}=(20-16)^{2}(5)=80 \mathrm{~W}$
$p_{4 \Omega}=(1)^{2}(4)=4 \mathrm{~W}$
$p_{20 \Omega}=(20-15)^{2}(20)=500 \mathrm{~W}$
$\sum p_{\text {abs }}=1560+256+80+4+500=2400 \mathrm{~W}(\mathrm{CHECKS})$

Question (4): [12 Marks]

The variable dc current source in the circuit in Fig. 4 is adjusted so that the power developed by the 4 A current source is zero. Find the value of $\boldsymbol{i}_{\boldsymbol{d} c}$.

Choose the reference node so that a node voltage is identical to the voltage across the 4 A source; thus:

Since the 4 A source is developing $0 \mathrm{~W}, v_{1}$ must be 0 V .
Since v_{1} is known, we can sum the currents away from node 1 to find v_{2}; thus:
$\frac{0-\left(240+v_{2}\right)}{12}+\frac{0-v_{2}}{20}+\frac{0}{15}-4=0$
$\therefore \quad v_{2}=-180 \mathrm{~V}$

Now that we know v_{2} we sum the currents away from node 2 to find v_{3}; thus:
$\frac{v_{2}+240-0}{12}+\frac{v_{2}-0}{20}+\frac{v_{2}-v_{3}}{40}=0$
$\therefore v_{3}=-340 \mathrm{~V}$
Now that we know v_{3} we sum the currents away from node 3 to find i_{dc}; thus:

$$
\begin{aligned}
& \frac{v_{3}}{50}+\frac{v_{3}-v_{2}}{40}=i_{\mathrm{dc}} \\
& \therefore \quad i_{\mathrm{dc}}=-10.8 \mathrm{~A}
\end{aligned}
$$

Question (5): [12 Marks]

The variable resistor $\boldsymbol{R}_{\boldsymbol{o}}$ in the circuit in Fig. 5 is adjusted until the power dissipated in the resistor is 250 W . Use Thévenin's theorem to find the values of $\boldsymbol{R}_{\boldsymbol{o}}$ that satisfy this condition.

We begin by finding the Thévenin equivalent with respect to R_{o}. After making a couple of source transformations the circuit simplifies to

$i_{\Delta}=\frac{160-30 i_{\Delta}}{50} ; \quad i_{\Delta}=2 \mathrm{~A}$
$V_{\mathrm{Th}}=20 i_{\Delta}+30 i_{\Delta}=50 i_{\Delta}=100 \mathrm{~V}$

Using the test-source method to find the Thévenin resistance gives

$i_{\mathrm{T}}=\frac{v_{\mathrm{T}}}{30}+\frac{v_{\mathrm{T}}-30\left(-v_{\mathrm{T}} / 30\right)}{20}$
$\frac{i_{\mathrm{T}}}{v_{\mathrm{T}}}=\frac{1}{30}+\frac{1}{10}=\frac{4}{30}=\frac{2}{15}$
$R_{\mathrm{Th}}=\frac{v_{\mathrm{T}}}{i_{\mathrm{T}}}=\frac{15}{2}=7.5 \Omega$
Thus our problem is reduced to analyzing the circuit shown below.

$p=\left(\frac{100}{7.5+R_{o}}\right)^{2} R_{o}=250$
$\frac{10^{4}}{R_{o}^{2}+15 R_{o}+56.25} R_{o}=250$
$\frac{10^{4} R_{o}}{250}=R_{o}^{2}+15 R_{o}+56.25$
$40 R_{o}=R_{o}^{2}+15 R_{o}+56.25$
$R_{o}^{2}-25 R_{o}+56.25=0$
$R_{o}=12.5 \pm \sqrt{156.25-56.25}=12.5 \pm 10$
$R_{o}=22.5 \Omega$
$R_{o}=2.5 \Omega$

Question (6): [8 Marks]

The op amps in the circuit in Fig. 6 are ideal.
a) Find \boldsymbol{i}_{a}.
b) Find the value of the left and right voltage sources for which $\boldsymbol{i}_{a}=\boldsymbol{i}_{a \max }$

Fig. 6
[a] Let $v_{o 1}=$ output voltage of the amplifier on the left. Let $v_{o 2}=$ output voltage of the amplifier on the right. Then

$$
\begin{aligned}
& v_{o 1}=\frac{-47}{10}(1)=-4.7 \mathrm{~V} ; \quad v_{o 2}=\frac{-220}{33}(-0.15)=1.0 \mathrm{~V} \\
& i_{\mathrm{a}}=\frac{v_{o 2}-v_{o 1}}{1000}=5.7 \mathrm{~mA}
\end{aligned}
$$

[b] for $\boldsymbol{i}_{a \max }$, the output of each amplifier is the saturation but one is +ve and the other is -re
The output of the right amplifier is $+\mathrm{Vcc}=+6 \mathrm{~V}$
The output of the left amplifier is $-\mathrm{Vcc}=-6 \mathrm{~V}$
$\boldsymbol{i}_{\boldsymbol{a} \max }=(6-(-6)) / 1 \mathrm{k} \Omega=12 \mathrm{~mA}$

