

Benha University
 Benha Higher Institute of Technology
 Department of Mechanical Eng.
 Subject: Fluid Mechanics M201

Model Answer of the Final Corrective Exam Date: Dec./28/2014

Elaborated by: Dr. Mohamed Elsharnoby

$$
\begin{aligned}
& \text { نموذج الاجابة لمـادة : ميكاتيكا الموائع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أستاذ المادة : د. محمد عبد اللطيف اللشرنوبى }
\end{aligned}
$$

Q\#1 a- i) Vapor pressure: Pressure at which liquid boils, or pressure of vapor above liquid at equilibrium state.
Dimensions: $\mathrm{ML}^{-1} \mathrm{~T}^{-2} \quad$ Units: $\mathrm{Pa}, \mathrm{N} / \mathrm{m}^{2}$, bar, psi
ii) Compressibility of the fluid: It is the volumetric strain per unit pressure change.

Dimensions: $\mathrm{M}^{-1} \mathrm{LT}^{2} \quad$ Units: Pa^{-1}
iii) Dynamic viscosity coefficient: It measures the resistance of the fluid to flow under the effect of shear force.
Dimensions: $\mathrm{ML}^{-1} \mathrm{~T}^{-1} \quad$ Units: $\mathrm{Kg} / \mathrm{m} . \mathrm{s}$, Pa.s, poise,..
iv) Specific weight: It is the weight per unit volume.

Dimensions: $\mathrm{ML}^{-2} \mathrm{~T}^{-2} \quad$ Units: $\mathrm{N} / \mathrm{m}^{3}$
v) Laminar flow: Flow at which particles move smoothly in parallel sublayers.

Turbulent flow: Flow at which particles interchange their sublayer' randomly.

No dimensions
 No units

vi) Metacenter: It is the point of intersection of axis of symmetry and line of action of buoyant force, or, point through which line of action of buoyant force is always passing.
No dimensions

No units

vii) Boundary Layer: It is a thin layer adjacent to the solid surface in which the flow is affected by the solid surface; or It is a thin layer adjacent to the solid surface in which the shear is remarkable.
No dimensions

No units

b)

Figure 1
$\mu=\rho v \rightarrow \quad v=0.5 S t=0.5 \mathrm{~cm}^{2} / \mathrm{sec}$
$v=0.5 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{sec}, \rho=0.9 \times 1000=900 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=900 \times 0.5 \times 10^{-4}=0.045 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$
$\tau=\mu \frac{\mathrm{du}}{\mathrm{dy}} \rightarrow \tau=0.045 \times \frac{6}{1.5 \times 10^{-3}}=180 \mathrm{~Pa}$
$\mathrm{F}=\tau \mathrm{A}=\tau \pi D L \rightarrow F=180 \pi \times 0.122 \times 0.16$
$\mathrm{F}=11.04 \mathrm{~N}$
c) The compressibility of the fluid is given by: $k=\frac{1}{\rho} \frac{d \rho}{d p}$

For isentropic process $\frac{p}{\rho^{\gamma}}=C \rightarrow \frac{d p}{d \rho}=C \gamma \rho^{\gamma-1}=\frac{p}{\rho^{\gamma}} \gamma \rho^{\gamma-1} \rightarrow \frac{d p}{d \rho}=\frac{\gamma p}{\rho}$
\therefore The isentropic compressibility $k_{s}=\frac{1}{\rho} \frac{\rho}{\gamma \mathrm{p}}=\frac{1}{\gamma \mathrm{p}}$

2-a)

Figure 2
From figure 2 above we have:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}+\rho_{\mathrm{k}} \mathrm{~g}(0.2)-\rho_{\mathrm{Hg}} \mathrm{~g}(0.08)+\rho_{\mathrm{w}} \mathrm{~g}(0.4)-\rho_{\mathrm{w}} \mathrm{~g}(0.14)=\mathrm{P}_{\mathrm{B}} \\
& \left.\therefore \mathrm{P}_{\mathrm{B}}=10^{5}+804 \times 9.81 \times 0.2-13600 \times 9.81 \times 0.08+9810 \times 0.262-\mathrm{b}\right) \\
& \therefore \mathrm{P}_{\mathrm{B}}=93454.77 \text { Pa }=0.9345477 \text { bar } \\
& \therefore \mathrm{P}_{\mathrm{B}}=13.55 \text { psi }
\end{aligned}
$$

2-b
The weight of the cube, (W), + the force required, (F), is equal to the buoyant force, F_{B}, when the cube is totally immersed in water as shown in figure 3

Figure 3
$\mathrm{F}=(1000-600) \mathrm{g}(0.2)^{3}=31.392 \mathrm{~N}$
c) We have the equation $H=\frac{R^{2} \omega^{2}}{2 g}$,

Firstly we have $\mathrm{H}=10 \mathrm{~cm}, \mathrm{R}=10 \mathrm{~cm} \rightarrow 0.1=\frac{0.1^{2} \omega^{2}}{2 g} \rightarrow \therefore$ the angular velocity $\omega=14 \mathrm{rad} / \mathrm{sec}$

For the second case $\mathrm{H}=36 \mathrm{~cm}, \mathrm{R}=10 \mathrm{com} \rightarrow \rightarrow 0.36=\frac{0.1^{2} \omega^{2}}{2 g} \rightarrow \therefore \omega=26.577 \mathrm{rad} / \mathrm{sec}$

Q\#3 a) There are two cases

stable

Figure 4-a
Case 1: Stable equilibrium, when the floating body is tilted to the right, a couple is created due to the deviation between the lines of actions of weight and buoyant force. This moment restore the body to its original position when the metacenter, M , is above the center of gravity, G.(figure 4-a)

Figure 4-b
Case 2: Unstable equilibrium, when the floating body is tilted to the right, a couple is created due to the deviation between the lines of actions of weight and buoyant force. This moment turn the body over to when the metacenter, M, is below the center of gravity, G.(figure 4-b)
b-i) Steady flow is the flow whose properties are independent on time.
ii) Potential flow is the flow which has zero vorticity.
iii) Ideal flow is the non-viscous flow; of the flow which has zero viscosity equal zero.
iv) Streamline - An imaginary line in the flow that is everywhere parallel to the local velocity vectors.

Figure 5
Streakline - An instantaneous line composed of all particles originating from a given point in the flow field; or is the locus of particles which have earlier passed through a prescribed point in space.
A timeline is a set of fluid particles that form a line segment at a given instant of time.
A pathline is the actual path traversed by a given (marked) fluid particle.
c)) $\mathrm{i}-$
$\vec{V}=\left(x^{2}-y^{2}\right) i-2 x y j$
$\vec{V}=u i+v j \rightarrow \rightarrow u=x^{2}-y^{2}, v=-2 x y$
the acceleration $\vec{a}=a_{x} i+a_{y} j$
$a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} \rightarrow a_{x}=\left(x^{2}-y^{2}\right)(2 x)+-2 x y(-2 y)=2 x^{3}+2 x y^{2}$
$a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} \rightarrow a_{y}=\left(x^{2}-y^{2}\right)(-2 y)+-2 x y(-2 x)=2 y^{3}+2 y x^{2}$
$a_{x}=80, a_{y}=160 \rightarrow \vec{a}=80 i+160 j$
ii) The flow will represent a physical flow if $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, for this flow we have $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=2 x-2 x=0$
\therefore The flow is a physical flow.
iii) The vorticity is given by: $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=-2 y+2 y=0$
iv) $u=x^{2}-y^{2}=\frac{\partial \psi}{\partial y} \rightarrow \psi=x^{2} y-\frac{y^{3}}{3}+f(x)$

$$
\begin{aligned}
& \mathrm{v}=-2 \mathrm{xy}=-\frac{\partial \psi}{\partial \mathrm{x}} \rightarrow \psi=\mathrm{x}^{2} \mathrm{y}+\mathrm{g}(\mathrm{y}) \\
& \therefore \psi=\mathrm{x}^{2} \mathrm{y}-\frac{\mathrm{y}^{3}}{3}
\end{aligned}
$$

The equation of the streamline passing through the point $(1,2)$ is given by: $3 x^{2} y-y^{3}=-2$

Q \# 4

a-The assumptions made to derive Bernoulli equation:

1. Steady flow - common assumption applicable to many flows.
2. Incompressible flow - acceptable if the flow Mach number is less than 0.3.
3. Frictionless flow - very restrictive; solid walls introduce friction effects.
4. Valid for flow along a single streamline; i.e., different streamlines may have different h_{0}.
5. No shaft work - no pump or turbines on the streamline.
6. No transfer of heat - either added or removed.
b-

Figure 6
The continuity equation is given by: $A_{A} V_{A}=A_{B} V_{B}$

Given: $A_{A}=0.3 \mathrm{~m}^{2}, \mathrm{~V}_{\mathrm{A}}=1.8 \mathrm{~m} / \mathrm{s}, \mathrm{A}_{\mathrm{B}}=0.15 \mathrm{~m}^{2}$, substitute in the above equation $\rightarrow \mathrm{V}_{\mathrm{B}}=3.6 \mathrm{~m} / \mathrm{s}$ Applying Bernoulli equation between A and B we get: $\frac{P_{A}}{\rho g}+\frac{V_{A}^{2}}{2 g}+Z_{A}=\frac{P_{B}}{\rho g}+\frac{V_{B}^{2}}{2 g}+Z_{B}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}+\frac{\rho}{2}\left(\mathrm{~V}_{\mathrm{A}}^{2}-\mathrm{V}_{\mathrm{B}}^{2}\right)+\rho g\left(\mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{B}}\right) \\
& \mathrm{P}_{\mathrm{B}}=117000+500\left(1.8^{2}-3.6^{2}\right)+9810(-6) \\
& \mathrm{P}_{\mathrm{B}}=53.28 \mathrm{kPa}
\end{aligned}
$$

c-

Figure 7

The maximum height $\mathrm{H}_{\text {max }}$ is given from the relation;
$H_{\text {max }}=H \sin ^{2} \theta=6.0 x 0.25=1.5 \mathrm{~m} ;$

The range R is given by the equation: $R=2 H \sin 2 \theta \rightarrow R=2 \times 6 \times \sin 60^{\circ}$
$R=6 \sqrt{3}=10.392 \mathrm{~m}$
ii) The time to empty the tank is calculated as follows:

$$
\begin{aligned}
& -A_{T} \frac{d h}{d t}=C_{d} A_{o} \sqrt{2 g h} \rightarrow d t=-\frac{A_{T}}{C_{d} A_{o} \sqrt{2 g}} \frac{d h}{\sqrt{h}} \\
& t=-\frac{A_{T}}{C_{d} A_{o} \sqrt{2 g}} \int_{6}^{6} \frac{d h}{\sqrt{h}}=-\frac{2 A_{T} \sqrt{h}}{C_{d} A_{o} \sqrt{2 g}} \mathcal{L}_{6}^{0} \rightarrow t=680.62 \mathrm{sec}
\end{aligned}
$$

Q\#5

a- The flow rate Q is given from the equation:

Figure 8

$$
\mathrm{Q}=\mathrm{AV}=\frac{\pi}{4}(0.04)^{2} \times 5=0.0062832 \mathrm{~m}^{3} / \mathrm{sec}
$$

i) We apply the continuity equation to get the exit velocity Ve
$V_{e}=\frac{Q}{A_{e}}=\frac{0.0062832}{10 \times \frac{1}{6} D_{J}^{2}}=2.3562 \mathrm{~m} / \mathrm{sec}$
ii) $\quad \mathrm{F}_{\mathrm{x}}=\left(\dot{\mathrm{m}} \mathrm{V}_{\mathrm{x}}\right)_{\text {out }}-\left(\dot{\mathrm{m}} \mathrm{V}_{\mathrm{x}}\right)_{\text {in }}$

$$
\mathrm{F}_{\mathrm{x}}=6.2832(-2.3562-5)=52.5 \mathrm{~N}
$$

b- $\sum \mathrm{F}_{\mathrm{x}}=\left(\dot{\mathrm{m}} \mathrm{V}_{\mathrm{x}}\right)_{\text {out }}-\left(\dot{\mathrm{m}} \mathrm{V}_{\mathrm{x}}\right)_{\text {in }} \rightarrow \mathrm{P}_{1} \mathrm{~A}-\mathrm{P}_{2} \mathrm{~A}-\mathrm{F}_{\mathrm{f}}=\dot{\mathrm{m}}\left(\beta \mathrm{U}_{\mathrm{o}}-\mathrm{U}_{\mathrm{o}}\right)$
$\dot{\mathrm{m}}=\rho \mathrm{Q}=39.27 \mathrm{~kg} / \mathrm{sec}, \mathrm{P} 1=120 \mathrm{kPa}, \mathrm{P} 2=110 \mathrm{kPa}, \beta=\frac{4}{3}$, and $\mathrm{U}_{\mathrm{o}}=5 \mathrm{~m} / \mathrm{s}$.
$\rightarrow \mathrm{F}_{\mathrm{f}}=13.064 \mathrm{~N}$
b)

Figure 9

For the entrance use $\mathrm{k}_{\mathrm{L}}=0.5$ and the exit $\mathrm{k}_{\mathrm{L}}=1.0$. The join at C is sudden. For both pipes use $f=0.01$.
Total head loss for the system $\mathrm{H}=$ height difference of reservoirs
$\mathrm{h}_{\mathrm{f} 1}=$ head loss for 200 mm diameter section of pipe
$\mathrm{h}_{\mathrm{f} 2}=$ head loss for 250 mm diameter section of pipe
$\mathrm{h}_{\mathrm{L} \text { entry }}=$ head loss at entry point
$\mathrm{h}_{\mathrm{L} \text { join }}=$ head loss at join of the two pipes
$\mathrm{h}_{\mathrm{L} \text { exit }}=$ head loss at exit point
Applying the energy equation between A and B
$\frac{\mathrm{P}_{\mathrm{A}}}{\rho \mathrm{g}}+\frac{\mathrm{V}_{\mathrm{A}}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{B}}}{\rho \mathrm{g}}+\frac{\mathrm{V}_{\mathrm{B}}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{B}}+\mathrm{h}_{\mathrm{L}}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}=0$ (atmospheric pressure)
$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}=0$ (large reservoirs)
$\therefore \mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{B}}=\mathrm{H}=\mathrm{h}_{\mathrm{L}}$
$h_{L}=h_{f}+h_{m}$, where h_{f} if the friction losses in the two pipes and h_{m} is the minor losses So

$$
\mathrm{H}=\mathrm{h}_{\mathrm{fl}}+\mathrm{h}_{\mathrm{f} 2}+\mathrm{h}_{\mathrm{L} \text { entry }}+\mathrm{h}_{\mathrm{L} \text { join }}+\mathrm{h}_{\mathrm{L} \text { exit }}=9 \mathrm{~m}
$$

All losses are, in terms of Q :

$$
\begin{gathered}
h_{f 1}=\frac{f L_{1} Q^{2}}{3 d_{1}^{5}} \\
h_{f 2}=\frac{f L_{2} Q^{2}}{3 d_{2}^{5}} \\
h_{\text {Lenny }}=0.5 \frac{u_{1}^{2}}{2 g}=0.5 \frac{1}{2 g}\left(\frac{4 Q}{\pi d_{1}^{2}}\right)^{2}=0.5 \times 0.0826 \frac{Q^{2}}{d_{1}^{4}}=0.0413 \frac{Q^{2}}{d_{1}^{4}} \\
h_{\text {Lexit }}=1.0 \frac{u_{2}^{2}}{2 g}=1.0 \times 0.0826 \frac{Q^{2}}{d_{2}^{4}}=0.0826 \frac{Q^{2}}{d_{2}^{4}} \\
h_{\text {Ljoin }}=\frac{\left(u_{1}-u_{2}\right)^{2}}{2 g}=\left(\frac{4 Q}{\pi}\right)^{2} \frac{\left(\frac{1}{d_{1}^{2}}-\frac{1}{d_{2}^{2}}\right)^{2}}{2 g}=0.0826 Q^{2}\left(\frac{1}{d_{1}^{2}}-\frac{1}{d_{2}^{2}}\right)^{2}
\end{gathered}
$$

Substitute these into

$$
h_{f 1}+h_{f 2}+h_{L \text { entry }}+h_{L_{\text {join }}}+h_{L} \text { exit }=9
$$

and solve for Q , to give $\mathrm{Q}=0.158 \mathrm{~m}^{3} / \mathrm{s}$
C) We have $\mathrm{m}=6$ physical parameters : power P, flow rate Q, speed of rotation of machinery N, diameter of impeller D, liquid density ρ and $g h$ is the available energy per unit mass due to the liquid head h. We have $\mathrm{n}=3$ (three basic dimensions L, M, and T).
Dimensions of the physical parameters:

$$
\begin{aligned}
& \mathrm{P}:\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] \\
& \mathrm{Q}:\left[\mathrm{L}^{\left.-\mathrm{T}^{2}\right]}\right. \\
& \text { gh: } \left.: \mathrm{LLT}^{-2}\right] \\
& \mathrm{p}:\left[\mathrm{ML}^{-3}\right] \\
& \mathrm{N}:\left[\mathrm{T}^{-1}\right] \\
& \mathrm{D}:[\mathrm{LL}]
\end{aligned}
$$

We have m-n=3 π groups $\pi_{1}, \pi_{2}, \pi_{3}$, i.e $\Phi\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=0$
Choose ρ, N, D as repeating variables , $\left(\pi_{1}=\mathrm{P} \mathrm{\rho}^{\mathrm{a}_{1}} \mathrm{~N}^{\mathrm{b}_{1}} \mathrm{D}^{\mathrm{c}_{1}}, \pi_{2}=\mathrm{Q} \rho^{\mathrm{a}_{2}} \mathrm{~N}^{\mathrm{b}_{2}} \mathrm{D}^{\mathrm{c}_{2}}, \pi_{3}=\mathrm{gh} \rho^{\mathrm{a}_{3}} \mathrm{~N}^{\mathrm{b}_{3}} \mathrm{D}^{\mathrm{c}_{3}}\right)$
-For $\left.\pi_{1}=\mathrm{P} \mathrm{\rho}^{\mathrm{a}_{1}} \mathrm{~N}^{\mathrm{b}_{1}} \mathrm{D}^{\mathrm{c}_{1}} \rightarrow \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] \mathrm{ML}^{-3}\right]^{\bar{a}_{1}}\left[\mathrm{~T}^{-1}\right]^{\mathrm{b}_{1}}[\mathrm{~L}]^{\mathrm{c}_{1}}$
For $\mathrm{M} \rightarrow 0=1+\mathrm{a}_{1} \rightarrow \mathrm{a}_{1}=-1$
For $\mathrm{L} \rightarrow 0=2-3 \mathrm{a}_{1+} \mathrm{c}_{1} \rightarrow \mathrm{c}_{1}=-5$
For $\mathrm{T} \rightarrow 0=-3-\mathrm{b}_{1} \rightarrow \mathrm{~b}_{1}=-3 \rightarrow \pi_{1}=\frac{\mathrm{P}}{\rho \mathrm{N}^{3} \mathrm{D}^{5}}$
-For $\left.\pi_{2}=Q \rho^{\mathrm{a}_{2}} \mathrm{~N}^{\mathrm{b}_{2}} \mathrm{D}^{\mathrm{c}_{2}} \rightarrow \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right] \mathrm{ML}^{-3}\right]^{\mathrm{a}_{2}}\left[\mathrm{~T}^{-1}\right]^{\mathrm{b}_{2}}[\mathrm{~L}]^{\mathrm{c}_{2}}$
For $\mathrm{M} \rightarrow 0=0+\mathrm{a}_{2} \rightarrow \mathrm{a}_{2}=0$
For $\mathrm{L} \rightarrow 0=3-3 \mathrm{a}_{2+} \mathrm{c}_{2} \rightarrow \mathrm{c}_{2}=-3$
For $\mathrm{T} \rightarrow 0=-1-\mathrm{b}_{1} \rightarrow \mathrm{~b}_{1}=-1 \rightarrow \pi_{2}=\frac{\mathrm{Q}}{\mathrm{D}^{3} \mathrm{~N}}$.
-For $\pi_{3}=$ gh $\left.\rho^{\mathrm{a}_{3}} \mathrm{~N}^{\mathrm{b}_{3}} \mathrm{D}^{\mathrm{c}_{3}} \rightarrow \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right] \mathrm{ML}^{-3}\right]^{\mathrm{a}_{3}}\left[\mathrm{~T}^{-1}\right]^{\mathrm{b}_{3}}$
For $\mathrm{M} \rightarrow 0=0+\mathrm{a}_{3} \rightarrow \mathrm{a}_{3}=0$
For $\mathrm{L} \rightarrow 0=2-3 \mathrm{a}_{3+} \mathrm{c}_{3} \rightarrow \mathrm{c}_{3}=-2$
For $\mathrm{T} \rightarrow 0=-2-\mathrm{b}_{1} \rightarrow \mathrm{~b}_{1}=-2 \rightarrow \pi_{3}=\frac{\mathrm{gh}}{\mathrm{N}^{2} \mathrm{D}^{2}}$ so we have three non-dimensional grouping:
$\pi_{1}=\frac{\mathrm{P}}{\rho \mathrm{N}^{3} \mathrm{D}^{5}}, \pi_{2}=\frac{\mathrm{Q}}{\mathrm{D}^{3} \mathrm{~N}}$, and $\pi_{3}=\frac{\mathrm{gh}}{\mathrm{N}^{2} \mathrm{D}^{2}}$

