Benha University
Benha Faculty of Engineering
Electrical Engineering and Circuit Analysis(a) (E1101)
Dr.Wael Abdel-Rahman Mohamed
$1^{\text {st }}$ Term 2015-2016
Electrical Department
$1^{\text {st }}$ Year Electrical
Time: 3 Hrs

Model Answer

Question (1): [12 Marks]
a) Find the resistance seen by the ideal voltage source in the circuit in Fig.1.
b) If $\boldsymbol{v}_{a b}$ equals 400 V , how much power is dissipated in the 31Ω resistor?
[a] Convert the upper delta to a wye.

$$
\begin{aligned}
& R_{1}=\frac{(50)(50)}{200}=12.5 \Omega \\
& R_{2}=\frac{(50)(100)}{200}=25 \Omega \\
& R_{3}=\frac{(100)(50)}{200}=25 \Omega
\end{aligned}
$$

Convert the lower delta to a wye.

$$
\begin{aligned}
& R_{4}=\frac{(60)(80)}{200}=24 \Omega \\
& R_{5}=\frac{(60)(60)}{200}=18 \Omega \\
& R_{6}=\frac{(80)(60)}{200}=24 \Omega
\end{aligned}
$$

Now redraw the circuit using the wye equivalents.

$$
R_{\mathrm{ab}}=1.5+12.5+\frac{(120)(80)}{200}+18=14+48+18=80 \Omega
$$

[b] When $v_{\mathrm{ab}}=400 \mathrm{~V}$

$$
\begin{array}{r}
i_{g}=\frac{400}{80}=5 \mathrm{~A} \\
i_{31}=\frac{48}{80}(5)=3 \mathrm{~A} \\
p_{31 \Omega}=(31)(3)^{2}=279 \mathrm{~W}
\end{array}
$$

Fig. 1

Question (2): [12 Marks]

For the circuit shown in Fig.2.
a) Write the node voltage equations needed to find the current i_{Δ}. (Write both the main and the auxiliary equations).
b) Write the mesh current equations needed to find the current i_{Δ}. (Write both the main and the auxiliary equations).
a) Solve by yourself.
b)

Mesh equations:
$53 i_{\Delta}+8 i_{1}-3 i_{2}-5 i_{3}=0$
$0 i_{\Delta}-3 i_{1}+30 i_{2}-20 i_{3}=30$
$0 i_{\Delta}-5 i_{1}-20 i_{2}+27 i_{3}=30$
Constraint equations:

$$
i_{\Delta}=i_{2}-i_{3}
$$

Question (3): [12 Marks]

a) Find the Norton equivalent circuit with respect to the terminals a, b for the circuit seen in Fig.3.
b) Find the maximum power that could be transferred to the load connected across the terminals a, b.

a) Norton equivalent circuit

The node voltage equations are:

$$
\begin{array}{ll}
\frac{v_{1}-40}{2000}+\frac{v_{1}}{20,000}+\frac{v_{1}-v_{2}}{5000} & =0 \\
\frac{v_{2}-v_{1}}{5000}+\frac{v_{2}}{50,000}+\frac{v_{2}-v_{3}}{10,000}+30 \frac{v_{1}}{20,000} & =0 \\
\frac{v_{3}-v_{2}}{10,000}+\frac{v_{3}}{40,000}-30 \frac{v_{1}}{20,000} & =0
\end{array}
$$

In standard form:
$v_{1}\left(\frac{1}{2000}+\frac{1}{20,000}+\frac{1}{5000}\right)+v_{2}\left(-\frac{1}{5000}\right)+v_{3}(0)=\frac{40}{2000}$
$v_{1}\left(-\frac{1}{5000}+\frac{30}{20,000}\right)+v_{2}\left(\frac{1}{5000}+\frac{1}{50,000}+\frac{1}{10,000}\right)+v_{3}\left(-\frac{1}{10,000}\right)=0$
$v_{1}\left(-\frac{30}{20,000}\right)+v_{2}\left(-\frac{1}{10,000}\right)+v_{3}\left(\frac{1}{10,000}+\frac{1}{40,000}\right)=0$
Solving, $\quad v_{1}=24 \mathrm{~V} ; \quad v_{2}=-10 \mathrm{~V} ; \quad v_{3}=280 \mathrm{~V}$
$V_{\mathrm{Th}}=v_{3}=280 \mathrm{~V}$

The mesh current equations are:

$$
\begin{array}{ll}
-40+2000 i_{1}+20,000\left(i_{1}-i_{2}\right) & =0 \\
5000 i_{2}+50,000\left(i_{2}-i_{\mathrm{sc}}\right)+20,000\left(i_{2}-i_{1}\right) & =0 \\
50,000\left(i_{\mathrm{sc}}-i_{2}\right)+10,000\left(i_{\mathrm{sc}}-30 i_{\Delta}\right) & =0
\end{array}
$$

The constraint equation is:
$i_{\Delta}=i_{1}-i_{2}$
Put these equations in standard form:

$$
\begin{array}{ll}
i_{1}(22,000)+i_{2}(-20,000)+i_{\mathrm{sc}}(0)+i_{\Delta}(0) & =40 \\
i_{1}(-20,000)+i_{2}(75,000)+i_{\mathrm{sc}}(-50,000)+i_{\Delta}(0) & =0 \\
i_{1}(0)+i_{2}(-50,000)+i_{\mathrm{sc}}(60,000)+i_{\Delta}(-300,000) & =0 \\
i_{1}(-1)+i_{2}(1)+i_{\mathrm{sc}}(0)+i_{\Delta}(1) & =0
\end{array}
$$

Solving, $\quad i_{1}=13.6 \mathrm{~mA} ; \quad i_{2}=12.96 \mathrm{~mA} ; \quad i_{\mathrm{sc}}=14 \mathrm{~mA} ; \quad i_{\Delta}=640 \mu \mathrm{~A}$ $R_{\mathrm{Th}}=\frac{280}{0.014}=20 \mathrm{k} \Omega$

b) The maximum power transferred to the load $=\left(\mathrm{V}_{\mathrm{th}}\right)^{2} / 4 \mathrm{R}_{\mathrm{th}}=0.98$ Watt

Question (4): [12 Marks]

The two op-amps in the circuit in Fig. 4 are ideal, calculate $\boldsymbol{v}_{\boldsymbol{o l}}$ and $v_{o 2}$.

Fig. 4

No current flows in the resistors in the feedback, so they are neglected.

$i_{1}=\frac{15-10}{5000}=1 \mathrm{~mA}$
$i_{2}+i_{1}+0=10 \mathrm{~mA} ; \quad i_{2}=9 \mathrm{~mA}$
$v_{o 2}=10+(400)(9) \times 10^{-3}=13.6 \mathrm{~V}$
$i_{3}=\frac{15-13.6}{2000}=0.7 \mathrm{~mA}$
$i_{4}=i_{3}+i_{1}=1.7 \mathrm{~mA}$
$v_{o 1}=15+1.7(0.5)=15.85 \mathrm{~V}$

Question (5): [12 Marks]

The switch in the circuit of Fig. 5 has been in position a for a long time. At $\boldsymbol{t}=\mathbf{0}$, it moves instantaneously to position \mathbf{b}. For $\boldsymbol{t} \geq \boldsymbol{0}^{+}$, find:
a) $v_{o}(t)$.
b) $i_{o}(t)$.
c) $v_{l}(t)$.
d) $v_{2}(t)$.

e) The energy trapped in the capacitors as $\boldsymbol{t} \boldsymbol{\rightarrow}$.
[a] $t<0$

$$
t>0
$$

$$
\begin{aligned}
& v_{o}\left(0^{-}\right)=v_{o}\left(0^{+}\right)=40 \mathrm{~V} \\
& v_{o}(\infty)=80 \mathrm{~V} \\
& \tau=\left(0.16 \times 10^{-6}\right)\left(6.25 \times 10^{3}\right)=1 \mathrm{~ms} ; \quad 1 / \tau=1000 \\
& v_{o}=80-40 e^{-1000 t} \mathrm{~V}, \quad t \geq 0
\end{aligned}
$$

[b] $i_{o}=-C \frac{d v_{o}}{d t}=-0.16 \times 10^{-6}\left[40,000 e^{-1000 t}\right]$

$$
=-6.4 e^{-1000 t} \mathrm{~mA} ; \quad t \geq 0^{+}
$$

[c] $v_{1}=\frac{-1}{0.2 \times 10^{-6}} \int_{0}^{t}-6.4 \times 10^{-3} e^{-1000 x} d x+32$

$$
=64-32 e^{-1000 t} \mathrm{~V}, \quad t \geq 0
$$

[d] $v_{2}=\frac{-1}{0.8 \times 10^{-6}} \int_{0}^{t}-6.4 \times 10^{-3} e^{-1000 x} d x+8$

$$
=16-8 e^{-1000 t} \mathrm{~V}, \quad t \geq 0
$$

$[\mathrm{e}] w_{\text {trapped }}=\frac{1}{2}\left(0.2 \times 10^{-6}\right)(64)^{2}+\frac{1}{2}\left(0.8 \times 10^{-6}\right)(16)^{2}=512 \mu \mathrm{~J}$.

