Benha University
Benha Faculty of Engineering
Department: Electrical Engineering
Time: 3 Hours.
January, 2017
B. Sc. Course Exam

Exam
Subject: Elec. Eng. And Circuit Analysis (a)

Examiner: Dr. Wae \mathcal{A}. Mohamed

Question (1) (10 marks)
In the circuit in Fig.1. Use the $\mathrm{Y} \Leftrightarrow \Delta$ transformations to find the total resistance between a and b terminals.

After the $20 \Omega-100 \Omega-50 \Omega$ wye is replaced by its equivalent delta, the circuit reduces to

Now the circuit can be reduced to

Then the equivalent circuit is the 96 ohm in parallel with $(64+240)$

Question (2) (20 marks)

For the circuit shown in Fig.2,
a) Write the node voltage equations needed to find the currents \boldsymbol{i}_{a} to \boldsymbol{i}_{e}. (Write both the main equations and the auxiliary equations).
b) Write the mesh current equations needed to find the currents \boldsymbol{i}_{a} to \boldsymbol{i}_{e}. (Write both the main equations and the auxiliary equations).

a) Write the node equations by yourself.
b) Only needed the mesh equations

$$
\begin{align*}
& 200=85 i_{1}-25 i_{2}-50 i_{3} \\
& 0=-75 i_{1}+35 i_{2}+150 i_{3} \tag{supermesh}
\end{align*}
$$

$$
i_{3}-i_{2}=4.3\left(i_{1}-i_{2}\right)
$$

$$
\text { Solving, } i_{1}=4.6 \mathrm{~A} ; \quad i_{2}=5.7 \mathrm{~A} ; \quad i_{3}=0.97 \mathrm{~A}
$$

$$
\begin{aligned}
& i_{\mathrm{a}}=i_{2}=5.7 \mathrm{~A} ; \quad i_{\mathrm{b}}=i_{1}=4.6 \mathrm{~A} \\
& i_{\mathrm{c}}=i_{3}=0.97 \mathrm{~A} ; \quad i_{\mathrm{d}}=i_{1}-i_{2}=-1.1 \mathrm{~A} \\
& i_{\mathrm{e}}=i_{1}-i_{3}=3.63 \mathrm{~A}
\end{aligned}
$$

Question 3 (20 marks)

The variable resistor $\boldsymbol{R}_{\boldsymbol{L}}$ in the circuit shown in Fig. 3 is adjusted for maximum power transfer to $\boldsymbol{R}_{\boldsymbol{L}}$.
a) Find the numerical value of $\boldsymbol{R}_{\boldsymbol{L}}$.
b) Find the maximum power transferred to $\boldsymbol{R}_{\boldsymbol{L}}$.
c) Find the value of \boldsymbol{R}_{L} if the power transferred to it is 24 Watt.

[a] Find the Thévenin equivalent with respect to the terminals of R_{L}. Open circuit voltage:

The mesh current equations are:

$$
\begin{array}{ll}
-240+3\left(i_{1}-i_{2}\right)+20\left(i_{1}-i_{3}\right)+2 i_{1} & =0 \\
2 i_{2}+4\left(i_{2}-i_{3}\right)+3\left(i_{2}-i_{1}\right) & =0 \\
10 i_{\beta}+1 i_{3}+20\left(i_{3}-i_{1}\right)+4\left(i_{3}-i_{2}\right) & =0
\end{array}
$$

The dependent source constraint equation is:

$$
i_{\beta}=i_{2}-i_{1}
$$

Place these equations in standard form:

$$
\begin{array}{ll}
i_{1}(3+20+2)+i_{2}(-3)+i_{3}(-20)+i_{\beta}(0) & =240 \\
i_{1}(-3)+i_{2}(2+4+3)+i_{3}(-4)+i_{\beta}(0) & =0 \\
i_{1}(-20)+i_{2}(-4)+i_{3}(1+20+4)+i_{\beta}(10) & =0 \\
i_{1}(-1)+i_{2}(1)+i_{3}(0)+i_{\beta}(-1) & =0
\end{array}
$$

Solving, $\quad i_{1}=99.6 \mathrm{~A} ; \quad i_{2}=78 \mathrm{~A} ; \quad i_{3}=100.8 \mathrm{~A} ; \quad i_{\beta}=21.6 \mathrm{~A}$
$V_{\mathrm{Th}}=20\left(i_{1}-i_{3}\right)=-24 \mathrm{~V}$

Short-circuit current:

The mesh current equations are:

$$
\begin{array}{ll}
-240+3\left(i_{1}-i_{2}\right)+2 i_{1} & =0 \\
2 i_{2}+4\left(i_{2}-i_{3}\right)+3\left(i_{2}-i_{1}\right) & =0 \\
10 i_{\beta}+1 i_{3}+4\left(i_{3}-i_{2}\right) & =0
\end{array}
$$

The dependent source constraint equation is:

$$
i_{\beta}=i_{2}-i_{1}
$$

Place these equations in standard form:

$$
\begin{array}{ll}
i_{1}(3+2)+i_{2}(-3)+i_{3}(0)+i_{\beta}(0) & =240 \\
i_{1}(-3)+i_{2}(2+4+3)+i_{3}(-4)+i_{\beta}(0) & =0 \\
i_{1}(0)+i_{2}(-4)+i_{3}(4+1)+i_{\beta}(10) & =0 \\
i_{1}(-1)+i_{2}(1)+i_{3}(0)+i_{\beta}(-1) & =0
\end{array}
$$

Solving, $\quad i_{1}=92 \mathrm{~A} ; \quad i_{2}=73.33 \mathrm{~A} ; \quad i_{3}=96 \mathrm{~A} ; \quad i_{\beta}=18.67 \mathrm{~A}$
$i_{\mathrm{sc}}=i_{1}-i_{3}=-4 \mathrm{~A} ; \quad R_{\mathrm{Th}}=\frac{V_{\mathrm{Th}}}{i_{\mathrm{sc}}}=\frac{-24}{-4}=6 \Omega$

$R_{\mathrm{L}}=R_{\mathrm{Th}}=6 \Omega$
[b] $p_{\text {max }}=\frac{12^{2}}{6}=24 \mathrm{~W}$
[c] at $P_{L}=24$ Watt $=P_{\text {max }} \rightarrow R_{L}=R_{T H}=6$ ohms

Question 4 (8 marks) 10
The op amp in the circuit in Fig. 4 is ideal. Using $\boldsymbol{V}_{c c}=$ $\pm 5 \mathrm{~V}$,
a) Find the range of values for σ in which the op amp does not saturate.
b) Find $\boldsymbol{i}_{\boldsymbol{o}}$ in microamperes when $\sigma=0.272$

[a] Replace the combination of $v_{g}, 1.6 \mathrm{k} \Omega$, and the $6.4 \mathrm{k} \Omega$ resistors with its Thévenin equivalent.

Then $\quad v_{o}=\frac{-[12+\sigma 50]}{1.28}(0.20)$
At saturation $v_{o}=-5 \mathrm{~V}$; therefore
$-\left(\frac{12+\sigma 50}{1.28}\right)(0.2)=-5, \quad$ or $\quad \sigma=0.4$
Thus for $0 \leq \sigma \leq 0.40$ the operational amplifier will not saturate.
[b] When $\quad \sigma=0.272, \quad v_{o}=\frac{-(12+13.6)}{1.28}(0.20)=-4 \mathrm{~V}$
Also $\frac{v_{o}}{10}+\frac{v_{o}}{25.6}+i_{o}=0$
$\therefore \quad i_{o}=-\frac{v_{o}}{10}-\frac{v_{o}}{25.6}=\frac{4}{10}+\frac{4}{25.6} \mathrm{~mA}=556.25 \mu \mathrm{~A}$

Good Luck

