**Benha University Benha Faculty of Engineering** January, 2017 Exam Examiner: Dr. Wael A. Mohamed كلية الهندسة بجنها

**Department: Electrical Engineering** Time: 3 Hours. **B. Sc. Course Exam** Subject: Elec. Eng. And Circuit Analysis (a)

E1101

دقالجودقوالاعتماد

aculty Of

# Question ① (10 marks)

In the circuit in Fig.1. Use the Y  $\Leftrightarrow \Delta$  transformations to find the total resistance between a and b terminals.



After the  $20 \Omega$ — $100 \Omega$ — $50 \Omega$  wye is replaced by its equivalent delta, the circuit reduces to



Now the circuit can be reduced to



Then the equivalent circuit is the 96 ohm in parallel with (64+240)

### Question (20 marks)

For the circuit shown in Fig.2,

- a) Write the node voltage equations needed to find the currents  $i_a$  to  $i_e$ . (Write both the main equations and the auxiliary equations).
- b) Write the mesh current equations needed to find the currents  $i_a$  to  $i_e$ . (Write both the main equations and the auxiliary equations).



- a) Write the node equations by yourself.
- b) Only needed the mesh equations



 $\begin{array}{ll} 200 = 85i_1 - 25i_2 - 50i_3 \\ 0 = -75i_1 + 35i_2 + 150i_3 \quad (\text{supermesh}) \\ i_3 - i_2 = 4.3(i_1 - i_2) \\ \text{Solving, } i_1 = 4.6 \text{ A}; \quad i_2 = 5.7 \text{ A}; \quad i_3 = 0.97 \text{ A} \\ i_a = i_2 = 5.7 \text{ A}; \quad i_b = i_1 = 4.6 \text{ A} \\ i_c = i_3 = 0.97 \text{ A}; \quad i_d = i_1 - i_2 = -1.1 \text{ A} \\ i_e = i_1 - i_3 = 3.63 \text{ A} \end{array}$ 

# Question **(20** marks)

The variable resistor  $R_L$  in the circuit shown in Fig.3 is adjusted for maximum power transfer to  $R_L$ .

- a) Find the numerical value of  $R_L$ .
- b) Find the maximum power transferred to  $R_L$ .
- c) Find the value of  $R_L$  if the power transferred to it is 24 Watt.



[a] Find the Thévenin equivalent with respect to the terminals of  $R_{\rm L}$ . Open circuit voltage:



The mesh current equations are:

$$-240 + 3(i_1 - i_2) + 20(i_1 - i_3) + 2i_1 = 0$$
  
$$2i_2 + 4(i_2 - i_3) + 3(i_2 - i_1) = 0$$

$$10i_{\beta} + 1i_3 + 20(i_3 - i_1) + 4(i_3 - i_2) = 0$$

The dependent source constraint equation is:  $i_{\beta} = i_2 - i_1$ 

Place these equations in standard form:

$$i_1(3+20+2) + i_2(-3) + i_3(-20) + i_\beta(0) = 240$$
  
$$i_1(-3) + i_2(2+4+3) + i_3(-4) + i_\beta(0) = 0$$

$$i_1(-20) + i_2(-4) + i_3(1+20+4) + i_\beta(10) = 0$$

$$i_1(-1) + i_2(1) + i_3(0) + i_\beta(-1) =$$

Solving,  $i_1=99.6$  A;  $i_2=78$  A;  $i_3=100.8$  A;  $i_\beta=21.6$  A $V_{\rm Th}=20(i_1-i_3)=-24$  V

0





The mesh current equations are:

 $\begin{aligned} -240 + 3(i_1 - i_2) + 2i_1 &= 0\\ 2i_2 + 4(i_2 - i_3) + 3(i_2 - i_1) &= 0\\ 10i_\beta + 1i_3 + 4(i_3 - i_2) &= 0 \end{aligned}$ 

The dependent source constraint equation is:  $i_{\beta} = i_2 - i_1$ 

Place these equations in standard form:

$$i_{1}(3+2) + i_{2}(-3) + i_{3}(0) + i_{\beta}(0) = 240$$

$$i_{1}(-3) + i_{2}(2+4+3) + i_{3}(-4) + i_{\beta}(0) = 0$$

$$i_{1}(0) + i_{2}(-4) + i_{3}(4+1) + i_{\beta}(10) = 0$$

$$i_{1}(-1) + i_{2}(1) + i_{3}(0) + i_{\beta}(-1) = 0$$
Solving,  $i_{1} = 92$  A;  $i_{2} = 73.33$  A;  $i_{3} = 96$  A;  $i_{\beta} = 18.67$  A  

$$i_{sc} = i_{1} - i_{3} = -4$$
 A;  $R_{Th} = \frac{V_{Th}}{i_{sc}} = \frac{-24}{-4} = 6\Omega$ 

$$24V \bigcirc \qquad 12V \leqslant 6\Omega$$

$$R_{\rm L} = R_{\rm Th} = 6 \,\Omega$$
  
[b]  $p_{\rm max} = \frac{12^2}{6} = 24 \,\,\mathrm{W}$ 

[c] at  $P_L=24$  Watt =  $P_{max} \rightarrow R_L=R_{TH}=6$  ohms

# Question (8 marks) 10

The op amp in the circuit in Fig.4 is ideal. Using  $V_{cc} = \pm 5V$ ,

- a) Find the range of values for  $\sigma$  in which the op amp does not saturate.
- b) Find  $i_o$  in microamperes when  $\sigma = 0.272$



[a] Replace the combination of  $v_g$ ,  $1.6 \,\mathrm{k}\Omega$ , and the  $6.4 \,\mathrm{k}\Omega$  resistors with its Thévenin equivalent.



Then 
$$v_o = \frac{-[12 + \sigma 50]}{1.28} (0.20)$$

At saturation  $v_o = -5$  V; therefore  $-\left(\frac{12+\sigma 50}{1.28}\right)(0.2) = -5$ , or  $\sigma = 0.4$ 

Thus for  $0 \le \sigma \le 0.40$  the operational amplifier will not saturate.

[b] When 
$$\sigma = 0.272$$
,  $v_o = \frac{-(12+13.6)}{1.28}(0.20) = -4$  V

Also 
$$\frac{v_o}{10} + \frac{v_o}{25.6} + i_o = 0$$
  
 $\therefore \quad i_o = -\frac{v_o}{10} - \frac{v_o}{25.6} = \frac{4}{10} + \frac{4}{25.6} \text{ mA} = 556.25 \,\mu\text{A}$ 

Good Luck,