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Q2:

Minimize z = 4x; + x,
subject to
3x, + x3=3
dxy + 3x2 2 6
X+ 2x3 =4
o, 0 =0

Using 13 as a surplus in the second constraint and x4 as a slack in the third constraint, the
equation form of the problem is given as

Minimize z = 4x, + xp

subject to
3¢+ x =3
Ax; + 3x; — x; =6
x, + 2x3 +x4=4

Xy Xo, Xy, Iy =

The third equation has its slack variable, x4, but the first and second equations do not Thas,
we add the artificial variables R, and R; in the first two equations and penalize them in the ob-
jective function with M R| + MR, (because we are minimizing). The resukting LP is given as

Minimize z = 4x; + x, + MR, + MR,
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subject to

3,:] + Xa + EI. =3
4x) + 3x; — x5 + Ry=6
xl + 11-2 + b = 4

Il, x;, I]: xq.. Rl* Rz -Z- ﬂ

The associated starting basic solution is now given by (R, B3, x4) = (3, 6, 4).

From the standpoint of solving the problem on the computer, M must assume a numeric
value. Yet, in practically all textbooks, including the first seven editions of this book, M is manip-
ulated algebraically in all the simplex tableaus The result is an added, and unnecessary, layer of
difficulty which can be avoided simply by substituting an appropriate numeric value for M
(which is what we do anyway when we use the computer). In this edition, we wilt break away
from the long Iradition of manipulating M algebraically and use 2 numerical substitution in-
stead. The intent, of course, 1s to simplify the presentation without losing substance.

What value of M should we use? The answer depends on the data of the original LP. Re-
call that M must be sulficiently large relaiive io the original objective coefficienis so it will act
as a penalty that forces the artificial variables to zero level in the optimal solution. At the
same tume, since compulers are ihe main tool for solving LPs, we do not want M to be too
large (even though mathematically it should tend to infinity) because potential severe round-
off error can result when very large values are manipulated with much smatler values. In the
present example, the objective coefficients of x| and x; are 4 and 1, respectively. It thus ap-
pears reasonable to set M = 100

Using M = 100, the starting simplex tableau is given as follows {for convenience, the z-col-
umn is eliminated because it does not change in all the iterations):

Basic X Xy E x4 Solation
1 =4 =1 0 0 o
R 3 1 ] 0 3
Ry a 3 -1 Q G
Xy 1 2 0 L 4

Before proceeding with the simplex method computations, we need to make the z-row
consisient with the rest of the tableau. Specifically, ip the tableau, x; = x; = x3 = 0, which
yields the starting basic solution R, =3, Ry =6 and x,=4. This solution yields
z =100 X 3 + 100 X 6 = 900 (instead of 0, as the right-hand side of the z-row currently
shows). This inconsistency stems from the fact that R, and R; bave nonzero cecefficients
(—100, —100) in the z-row (compare with the all-slack starting solution in Example 3.3-1,
where the z-row coelficients of the slacks are zero).

We can eliminate this inconsistency by substituting out R, and R; in the z-row using the ap-
propriate constrainl equations In particular, notice the highlighted elements (= 1) in the
Ry-row and the R;-row. Multiplying each of R;-row and R;-row by 100 and adding the suim 1o
the z-row will substitute out K| and K in the objective row—that is,

New z-row = Qld z-row + (100 x R;-row + 100 X R,-row)



The modified tableau thus becomes (verify!}

Ry Ry Ky Solution

Notice that z = 900, which is consistent now with the values of the starting basic feasible solu-
tion: Ry = 3, Ry = 6,and x4 = 4.

The last tablean is ready for us to apply the simplex method using the simplex optimality
and the feasibility conditions, exactly as we did in Section 3.3.2. Because we are minimizing the
objective function, the variable x, having the most positive coefficient in the z-row {= 696} en-
ters the solution. The minimum ratio of the feasibility condition specifies Ry as the leaving vari-
able {venfy!).

Once the entering and the leaving variables have been determined, the new tableau can be
computed by using the familiar Gauss-Jordan operations

Basic Ry R xy Solution
z =232 )] L] 04
Ii %

Rei et O Ot =
X, LN LR '

i

The last tableau shows that x, and R, are the entering and leaving variables, respectively.
Continuing with the simplex computations, twa maore iterations are needed to reach the opli-
mum: x; = -25- Xy = %,z = % (verify with TORA).

MNote that the artificial variables R, and R; leave the basic solution in the first and second if-
erations, a result that is consistent with the concept of penalizing them in the objective function.

Remarks. The nuse of the penalty M will not foree an artificial variable to zero level in the final
simplex iteration if the LF does not have a feasible solution (ie., the comstraints are not
consistent) Tn this case, the final simplex iteration wili include at least one artificial variable at a
positive level Section 3.5.4 explains this situation.



Two Phase:
We use the same problem in Example 3.4-1..

Phase |
Minimize r = R; + Ry
subject to
Ix; t xp + R =3
4xy + 3xp — X3 + R; =06
x + 2x; 4+ x4 =

X1, X3, X3, X, Ry, o 2 0

The associated tableau 1 given as

Basic x X3 xy Xy Solotion
v 0 o o 0 0
e 3 1 0 0 3
R 4 3 -1 0 6
Xy 1 2 0 1 4

As in the M-method, R, and R; are substituted out in the r-row by using the following com-
putations:

New r-row = Old r-row + (1 X Rj-row + 1 X R;-row)

The new r-row js used (o solve Phase I of the problem, which yields the following optimum
tableau (verify with TORA's Tterations = Two-phase Method):

Basic x| g Solution
r 0 0 0
x ! 0 :
Al ﬂ 1 g
Xy 0 0 1




Becaunse minimum r = 0, Phase I praduces the basic feasible solution x) = % Xy = g,
and x; = 1, At this point, the artificial variables have completed their mission, and we ¢an elim-
inate their columns altogether from the tableau and move on to Phase IL

Phase I

After deleting the artificial columns, we write the original problem as

Minimize z = 4x, + x

subject to
L 3
I + EIJ = E
3 _
Xy — 313 = g
X3 + Xy = i

Xy, ¥, X3, %4 2 0

Essentially, Phase | 1s a procedure that transforms the original constraint equations in 2 manner
that provides a starting basic feasible solution for the problem, if one exists. The tableau associ-

ated with Phase 1I problem is thus given as

Basic Iy ' Solution
i 0 0 0
X % 0 %
X ‘% 0 E
X, 1 1 1

Apain, because the basic variables x| and x; have nonzero coefficients in the z-row, they

must be substituted out, using the following computations.

New z-row = Old g-row + (4 X x,-row + 1 X xprow}

"The initial tableau of Phase I is thus given as

Basic X x; 13 X Solution
z 0 0 L &
1 1 ¢ i 0 3
Xy 0 1 -0 i
X, 0 0 1 1 1

Because we are minimizing, X3 must enter the solution. Application of the simplex method
will produce the optimum in coe iteration (verify with TORA).
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TABLE 517  Morthwest-Corner $tarting Solution

1 2 i 4 Supply
j[x] 2 ] 11
1 A5 i— FJ;P_E 15
1zl oy 7 9 20
|
4 14 IR Bt
3 S8E | a0
Dheimand S 15 15 15

2 =5, x,=10
fpp = 5 Xy =15, 25 =5
xy =10
The associated cost of the schadule is
1=5XW0+1W0xI+5xTH13X9+5x 2+ 10 x 18 = §520

TABLE 5.18  Least-Cost Starting Solution

1 2 3 1 Supply
10| (start) 2 n 1
1 s L ]ﬁ;ﬂ s
A

12 7 9| [(end) 20

2 /( 3 a0 25
. ﬁ;’},ﬁ 14 16 %13 .

Demand 5 JL 15 15

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made, The starfing solution (eonsisting of 6 basic variables) is
Xpp = 15, 1y = 0, x5y = 15, 20y = 10, 25 = 5, ¥y = 5 The associated objective value is

r=l5 K2 +0XK11+19 591020+ 5 =4 4+5xH18=58475
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TABLE 5,19 Row and Colunin Penalties in VAM

1 2 a 1 Fow penalty
10 2 T 11 W-2=48
1 15
12 7 9 0 §-7=12
2 25
4 14 16 18 14 - 4 =41
3 5
5 15 15 15
Column pepalty 10-4  7-2 16-9 18-11
=6 =5 =7 =7

TABLE 5.20 First Assignment in VAM {5 = 5)

L 2 3 4 Row penajty
| 2 20 1 B
15
3 7 g 0 2
25
3 14 g 1% )
1
15 14
Calima panalty —_— 5 7 7

Table 5.20 shows that row 1 has the highest penalty (= 9. Hence, we assign the maximw
amount possible to cell £1,2), which yields xj; = 15 and simultanecusly satisfies both row L an
column 2. We arbitrarily cross out cobumn 2 and adjust the sopply in row 1 to zero.

Continuing in the sarne manner, row 2 will produce the highest penalty (= 11), and we a
sign xy = 15, which crosses out column 3 and leaves 10umits in row 2, Only column 4 is left, an
it has a positive supply of 15 units. Applying the least-cost method to that column, we successivel
assign xpq = 0, x4y = 5, and x5y = 10 (verify!). The associated objective value for this solution

=152 +0% 11 +15x0+10x20+5x4d+35x15= 5475

This solution happens o have the same objective value as in the least-cost method.
b)
1. A dual variable is defined for each primal (constraint) equation.

1. A dual constraint is defined for each primal variable.

3. The constraint (cotumn) coefficients of a primal variable define the left-hand-
side coefficients of the dual constraint and its objective coecfficient define the
right-hand side.

4. The objective coefficients of the dual equal the right-hand side of the primal con-
straint equations.

TABLE 4.2 Hules for Constructing the Dual Problem

Daal problem
Primal problem
objective® Objeciive Constraints type Varighizs sign
Maximization Minkmization = Unrestricted
Minimization Maximization = Uniestricted

* All prima constrainls are equetions with soanegaiive right-hand side anid all the versbiles are noansgative
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4.4.1 Dual Simplex Algorithm

The crux of the dual simplex method is 1o start with a better than optimal and infeasible
basic sojution. The opiimality and feasibility conditions are designed to preserve the op-
timalily of the basic solutions while moving the solution iterations toward feasibility.

Dual feastbility condition. The leaving variable, x,, is the basic vaniable having the
most nagative value (ties are broken arbitrarity). If all the basic variables are
nonnegative, the algorithm ends.

Dual optimality condition. Given that x, is the leaving variable, let T; be the reduced
cost of nonbasic vaniable x; and e,; the constraint coefficient in the x,-row and x-column

of the tableau. The entering vanable 15 the nanbasic vanable with -aél.],- < () that corre-
sponds to

min { ;fﬂ,a,j < GI}

Monbagic =

(Ties are broken arbitranly ) If &,; = 0 for all nonbasic x;, the problem has no fes-
sible solution.

Q5
max z”§ (2,4,2,6)x1+(2,6,1,3)x2+ (1, 3,1, 3) X3
St Xg+Xo +2X3+ X4 =2
2X1+ 33X, +4X3 + X5 =3
6X1 + 6Xo + 2X3 + Xg =8 where :x; >0,i=1,2,3, 4,5,6

Step (0): we construct the initial tableau of exterior simplex:

Basis X1 Xy X3 X4 X5 X6 R.H.S
Z (-13,-5,12,4) | (-4,-2,6,2) (-6,-231) (-3-1,3,1) | 0 0 0 0
X4 4 1 1 2 1 0 0 2
Xs 9 2 3 4 0 1 0 3
Xs 14 6 6 2 0 0 1 8

(Z, —c1, Z,- ¢, Z,-0) = ((-2,-4,6,2), (44,3 1), (223 1)) and (7,.7,.73) =
(R (7). R(72), R (75)) = (-8,-9, -5).
Step (1):

J-={j: ayj < 0} ={1, 2, 3} #1 the Algorithm does not stop.

Step (2): 1. ={i: aj, >0} = {1, 2, 3} #d the problem is not unbounded

br . [ Dbi . . |b b, b3 . [114) 1
—=min<—,iel, p=min. —,—=, —=min< =, =, - =—=r=2
a aio a, A, ag 237) 3

ro

Step (3): J+ = {j: ayj > 0y=0o
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6= _mind 2 _jciaj>0'= min —aol’—aoz’—a03 =min{(1,2,1,3),
1 R R

Alw

R(€,)=min {R(les) R( %
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k=3

_—aoL .8y . i =mi =
T T g 1. <o =R @)=

=R(6,)<R(8,)=6, <0, =>s=k=3

the pivot element is ay3
Step (4): the next tableau by pivot element:

Jrfes-:

Basis X1 X2 X3 | Xa Xs X R.H.S
Z [—5 -3 472,370] [,3 ,L%%j (72 731745%) 0 0 (0 L*,%] 0 (0 3,%,%]
X4 -1 0 -1 0 1 -1 0 1

2 2 2
X3 5 1 3 1 0 1 0 3
4 2 4 4 4
X Q 5 g 0 0 __1 1 E
2 2 2 2

Step (1): J-={j: ay < 0} ={1, 2} = the Algorithm does not stop.

urrs) = RODRODROD 2

Step (2): 1. = {i: aj, > 0} = {2,3} D= the problem is bounded
br bi . .| b, Dby . {3 13} 3
— =min —,iel, ;=min{——,—:=min —=r=2<
aro aio a20 a30 5 19 5

Step (3): J+ = {j: ay; > 0} ={5}

R ;mm{ jedar, >o} {_ac" ao2} min{(6,2,7,13},(%,
ark

13
3

10
3’

-

R(6,)= mln{R(62713) R( 5)} min{l17}=7=k =2

3’
0, ﬂimin{ jed, arj<0}:>R(6?) min {®=co}

w|5
w[&




=R(6,)<R(6,) =6, <0, =s=k=2

the pivot element is ay;
Step (4): the next tableau by pivot element

Basis X1 Xo X3 Xa Xsg Xg R.H.S
Z 422 422 0 8 13 0 2,4 0 3,5,4,6
(3 3’3 G] (3 3’3 6) 0 (3’4’3 5) (52?2} ( :
X4 1 1 0 2 1 1 0 1
3 3 3 3
%o 2 2 1 4 0 1 0 1
3 3 3 3
Xs 2 2 0 -6 0 2 1 2

Step (1):J-={j : agj ?0} = {1} # ® = the algorithm does not stop .

(71:73:75)=(R(71),R(73). R (75))=(-2,7.3)
Step (2): 1. ={i: aj, >0} ={1, 2, 3} #®= the problem is bounded

Ratio test: E:min {ﬂ,ieh}:min {&,E,bi}:min {3§ }:1
aro aio alO aZO a30 2

The index of the entering variable isr =3
Step (3): J+ ={j: ay > 0}={3,5}

Glzﬂzmin ﬂ:je\],arj >0¢=min ma =[g_—l3gj
R ark R ar R a, |*R\3 3 3

2 -1 13
R, )=R|—=,—,3,— |=1
) (3 - 3}

«92=ﬂ—mln — . 1jed,aj <0 mln (§§1—§) [ggglj
RarL R ar 99186 333
2
3

55135 2
vlo)=mngR(3.3.32.5) R 5

R(6,)<R(8,)=s=k =1

the pivot element is as;
Step (4): the next tableau by pivot element

Basis X1 X2 X3 X4 X5 Xe R.H.S
V4 0 0 0 0 4,6,6,8
0 (0.2,1,2) (0.2,1,2) (46,68
2 2
X4 0 0 5 1 0 -1 2
3 6




w01 10 N L
3 3 3 3
X1 1 0 -3 0 1 1 1
2
(73076)=(R(7:).R (7)) =(L1)
Step (1): J.: ij 18, <0 }: ® = the Algorithm stops .
the solutionisz=R (z) =R (%,%,10,%):11, X1=1, X = % X3=0, X4= % Xs =Xg =0



