> جامعة بنها
> كلية الهندسة بينها
> قسم الهندسة الكهربية
> نموذج الإجابة امتحان مادة هندسة التحكم ك352 تخلفات مايو 2013
> مدرس بالقسم شوقي حامد عرفه

Benha University, Faculty of Engineering	Elect.Eng.Depart. Third Year 2013
Subject: Control Engineering (E352)	Time: 3-hours تخفات

Answer

Q1 a- Define: $\omega_{\mathbf{n}}, \omega_{\mathrm{d}}, \omega_{\mathrm{r}}, \omega_{\mathrm{B}}, \omega_{\mathrm{c}}, \omega_{\mathrm{g}}, \omega_{\mathrm{p}}, \mathbf{M}_{\mathrm{r}}, \boldsymbol{\eta}, \mathbf{G}_{\mathbf{m}}, \boldsymbol{\gamma}_{\mathrm{m}}$? (15 marks)
-Natural frequency $\omega_{\mathbf{n}} \mathrm{rad} / \mathrm{sec}$: it is the natural frequency depends on the natural of the system parameters.

- Under damped natural frequency $\omega_{\mathbf{d}} \mathrm{rad} / \mathrm{sec}$: it is the under damped natural frequency depends on the damping coefficient $\boldsymbol{\eta}$ as it is less than one $\boldsymbol{\eta}<1$.
-Resonant frequency $\omega_{\mathrm{r}} \mathrm{rad} / \mathrm{sec}$: it is the frequency at which the peak value of the output frequency response for a second order is equal to $\boldsymbol{\omega}_{r}=\boldsymbol{\omega}_{\boldsymbol{n}} \sqrt{\mathbf{1 - 2 \zeta ^ { 2 }}}$

$$
\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}, \quad \text { for } 0 \leq \zeta \leq 0.707
$$

As ζ approaches zero, M_{r} approaches infinity $\dot{0}<\zeta \leqslant 0.707$, the resonant frequency ω_{r} is less than the damped natural frequency
-Cut off frequency $\omega_{\mathbf{B}} \mathrm{rad} / \mathrm{sec}$: it is the frequency at which the magnitude of the output frequency response is equal to $\left(=\frac{1}{\sqrt{2}}\right)$ of the low frequency .
-Corner frequency $\omega_{\mathbf{c}} \mathrm{rad} / \mathrm{sec}$: it is the frequency at which the magnitude of the output frequency response is changed sharply. It may be ($0,1,1 / \mathrm{T}, \boldsymbol{\omega}_{\mathbf{n}}$)
-Gain crossover frequency ω_{g} : it is the frequency at which the magnitude of the output frequency response is equal to one or zero decibel.
$|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{g}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{g})|=1 \quad$ or $|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{g}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{g})|=0 d b$
-Phase crossover frequency ω_{p} : it is the frequency at which the phase of the output frequency response is equal to (-180) degrees.

Imag. [$\left.\mathrm{G}\left(\mathrm{j} \omega_{\mathrm{p}}\right) \mathrm{H}\left(\mathrm{j} \omega_{\mathrm{p}}\right)\right]=0 \quad$ or $\quad \angle \mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{p}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{p})=-180 \mathrm{deg}$.
-Maximum resonant magnitude $\mathbf{M}_{\mathbf{r}}$: it is the peak value of the output frequency response for a second order system $\boldsymbol{M}_{\boldsymbol{r}}=\frac{\mathbf{1}}{2 \zeta \sqrt{\mathbf{1 - \zeta ^ { 2 }}}}$

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad M_{r}=|G(j)|_{\max }=\left|G\left(j \omega_{r}\right)\right|=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}
$$

-damping coefficient $\boldsymbol{\eta}$ it depends on the natural of the system parameters. For second order system

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Values of η	System stability	Step-response
$0>\eta$	System is unstable	undefined
$\eta=0$	System is critically stable	oscillatory
$0<\eta<1$	System is stable	Under-damped
$0<\eta=1$	System is stable	Critically damped
$0<\eta>1$	System is stable	Over damped

-Gain margin $\mathbf{G}_{\mathbf{m}}$: it is reciprocal of the magnitude of the output frequency response at the Phase crossover frequency ω_{p}
$\mathbf{G}_{\mathrm{m}}=1 /\left[\right.$ Real of $\left.\mathrm{G}\left(\mathrm{j} \omega_{\mathrm{p}}\right) \mathrm{H}\left(\mathrm{j} \boldsymbol{\omega}_{\mathrm{p}}\right)\right]=1 /|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{p}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{p})|=\mathrm{K}_{\mathrm{c}} / \mathrm{K}$
$\mathrm{G}_{\mathrm{M}}=20 \log \mathrm{G}_{\mathrm{m}} \mathrm{db}$
-Phase margin γ_{m} : it is the angle of the output frequency response at the gain crossover frequency plus 180 degrees.

$$
\gamma_{m}=\angle \mathrm{G}\left(\mathrm{j} \omega_{g}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right)+180 \mathrm{deg} .
$$

b- Consider a control system shown in Fig. 1 if $\mathbf{G}(\mathbf{S})=\mathbf{4} /[\mathbf{S}(\mathbf{S}+\mathbf{2})], \mathbf{H}(\mathbf{S})=\mathbf{1}$
i-Find the frequency response as $\mathrm{r}(\mathrm{t})=5 \sin \omega t$? ii-Calculate $\mathbf{M}_{\mathrm{r}}, \boldsymbol{\omega}_{\mathrm{r}}$?

Fig. 1
Frequency Response: it means the steady state output of a 1-linear 2-timeinvariant 3- stable control system to a sinusoidal input and it is a sinusoidal with phase shift positive or negative and does not depend on the initial conditions.

b-Steps to find frequency Response:

1- the closed loop transfer function $=\mathbf{T}(\mathbf{s})=\mathbf{C}(\mathbf{S}) / \mathbf{R}(\mathbf{S})=$
$\mathrm{C}(\mathrm{S}) / \mathrm{R}(\mathrm{S})=\frac{\mathrm{G}(\mathrm{s})}{1+G(S) H(S)}=\frac{\omega_{n}{ }^{2}}{S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}}=\frac{4}{S^{2}+2 S+4}, \omega_{\mathrm{n}}=\frac{2 \mathrm{rad}}{\sec } \zeta=0.5$
2-the closed loop frequency transfer function $=$
$\mathbf{T}(\mathbf{j} \boldsymbol{\omega})=\mathbf{C}(\mathbf{j} \omega) / \mathbf{R}(\mathbf{j} \omega)=\frac{4}{(\mathbf{j} \omega)^{2}+2(\mathrm{j} \omega)+4}=\mathrm{M}\llcorner\Phi=\mathrm{Re}+\mathrm{j} \mathrm{imag}$

$$
M=\frac{4}{\sqrt{\left(4-\omega^{2}\right)^{2}+4 \omega^{2}}} \quad, \Phi=\tan ^{-1}\left[2 \omega /\left(4-\omega^{2}\right)\right]
$$

3-As the input $=r(t)=5 \sin \omega t$ then

$$
\text { the response }=C(t)=5 M \sin (\omega t+\Phi)
$$

$$
=\frac{20}{\sqrt{\left(4-\omega^{2}\right)^{2}+4 \omega^{2}}} \sin \left[\omega t+\tan ^{-1}\left[2 \omega /\left(4-\omega^{2}\right)\right]\right.
$$

$$
\begin{aligned}
M_{r} & =\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}=\frac{1}{2(0.5) \sqrt{1-(0.5)^{2}}}=1.155 \\
\omega_{r} & =\omega_{n} \sqrt{1-2 \zeta^{2}}=2 \sqrt{1-2(0.5)^{2}}=1.414 \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

Q2
Consider a control system shown in Fig. 1 if $\mathbf{G}(\mathbf{S})=\mathbf{K} /[(\mathbf{S}+\mathbf{3})(\mathbf{S + 2})], \mathbf{H}(\mathbf{S})=\mathbf{1} /(\mathbf{S}+\mathbf{1})$
a- Sketch the complete root locus for positive values of \mathbf{K} ?
b- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 6}$ and find the closed loop poles using the plot?
c- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 6}$ and find the closed loop poles analytically?
d- Write short MATLAB program to solve \mathbf{a} and solve \mathbf{b} ?

Root locus:
1-the root locus is symmetrical about the real axis in the S-plane
2-the open loop $\mathrm{TF}=\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathbf{G}(\mathbf{S}) \mathbf{H}(\mathbf{S})=\mathbf{K} /[(\mathbf{S}+\mathbf{3})(\mathbf{S}+\mathbf{2})(\mathbf{S}+\mathbf{1})]=\mathrm{K} /\left[\mathrm{S}^{3}+6 \mathrm{~S}^{2}+11 \mathrm{~s}+6\right]$
3-the root locus starts at the pole and ends at the zero or infinity
4-number of root loci= $n=$ number of poles of the open loop $\mathrm{TF}=3$ at $[-1,-2,-3]$
5-number of zeros $=m=0$
6-number of asymptotes $=\mathrm{n}-\mathrm{m}=3-0=3$
8-center of gravity $=A=\frac{\sum \text { poles }-\sum \text { zoles }}{n-m}=\frac{-1-2-3}{3}=-2$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are $=\Theta=\frac{ \pm 180(2 R+1)}{n-m}= \pm 60, \pm 180$
10- Points of crossing the imaginary axis as Routh test
Charct.equa $=1+G(S) H(S)=0=S^{3}+6 S^{2}+11 s+6+K$

S^{3}	1	11	$6+K \geq 0,[66-6-K] / 6 \geq 0$ then -
S^{2}	6	$6+K$	$6 \leq K \leq 60, K c=60$
S	$[66-6-K] / 6$		$6 S^{2}+6+60=0, S=j \omega=\sqrt{11} \mathrm{rad} / \mathrm{sec}$
S^{0}	$6+\mathrm{K}$		

11- break points (break away or break in) at
$-\frac{d K}{d S}=0=\frac{d}{d S}\left[\frac{1}{G(S) H(S)}\right]=\frac{d}{d S}\left[\mathrm{~S}^{3}+6 \mathrm{~S}^{2}+11 \mathrm{~s}+6\right]=3 \mathrm{~S}^{2}+12 \mathrm{~s}+11=0$
$\mathrm{S}=-2.6$ refused, $\mathrm{S}=-1.4$ is a break- away point
12-break angles at $[\pm 180(2 R+1) / r]$ where $r=$ number of branches(poles for break away or zeros for break in) $\mathrm{R}=0,1,----$ break angles at $[\pm 180] / 2= \pm 90$

13-there is no angle of departure (complex poles)
14- there is no angle of arrival (complex zeros)
15-sketch the root loci as
16- the damping factor or coefficient ζ is straight line with slope $\Theta=\cos ^{-1} \zeta$
with respect to the negative real axis in the S-plane. $\Theta=\cos ^{-1} 0.6=53.13 \mathrm{deg}$. at the test point (intersection point) $\mathrm{S}_{\mathrm{d}}=-1 \pm \mathrm{j} 1.4$

$$
\begin{aligned}
& \text { angle condition }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3}\left[\theta_{\text {zeros }}-\Theta_{\text {poles }}\right]= \pm 180(2 \mathrm{R}+1)=90+54+36=180 \mathrm{deg} \\
& \text { magnitude condition }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \frac{\| \text { poles } \|}{\| \text { zeros } \|}=K=1.4 * 1.6 * 2.4=5.3 \\
& \sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { open loop poles }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { closed loop poles }=\text { constant as } \mathrm{n}-\mathrm{m} \geq 2 \\
& \sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { open loop poles }=-1-2-3=-6=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { closed loop poles }=2(-1) \pm \mathrm{j} 1.4+\mathrm{p} \\
& \text { then } \mathrm{p}=-4 \text { i.e.closed loop poles are }[-1 \pm \mathrm{j} 1.4,-4]
\end{aligned}
$$

19- To find analytically closed loop poles and K as

$\left(\mathrm{S}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{S}+\omega_{\mathrm{n}}^{2}\right)(\mathrm{S}+\mathrm{a})=$ characteristic equa. for a third order syst.
Solve

$$
\begin{gathered}
\text { Solve } 1+G(S) H(S)=0=S^{3}+6 S^{2}+11 s+6+K=\left(S^{2}+1.2 \omega_{n} S+\omega_{n}{ }^{2}\right)(S+a) \\
=S^{3}+\left(1.2 \omega_{n}+a\right) S^{2}+\left(1.2 \omega_{n} a+\omega_{n}{ }^{2}\right) S+\omega_{n}{ }^{2} a \\
1.2 \omega_{n}+a=6, \ldots, \quad 1.2 \omega_{n} a+\omega_{n}^{2}=11, \ldots, \quad \omega_{n}{ }^{2} a=k+6
\end{gathered}
$$

Prog. $\quad \gg \mathrm{n}=[1] ; \mathrm{d}=\left[\begin{array}{llll}1 & 6 & 1 & 1\end{array}\right]$; rlocus(n,d), grid
Q3
(30marks)
Consider a control system shown in Fig. 1 if $\mathrm{H}(\mathrm{s})=1 /(\mathrm{S}+2), \quad \mathrm{G}(\mathrm{s})=\mathrm{k} /(\mathrm{S}+1)(\mathrm{s}+3)$,
a- Prove that the gain margin $=6.02 \mathrm{db}$ at $3.32 \mathrm{rad} / \mathrm{sec}$. and the phase margin $=25.4$ degrees at $2.35 \mathrm{rad} / \mathrm{sec}$. as $\mathrm{K}=\mathbf{3 0}$?
b- Sketch the polar plot as $\mathbf{K}=\mathbf{3 0}$?
c- Sketch the Bode plot as $\mathrm{K}=\mathbf{3 0}$?
d- Find the gain margin and the phase margin using the plots?
e- Write a short MATLAB program to solve b, c and d ?
f- Write short MATLAB program to Sketch the Nichols plot?
1- the open loop $\mathrm{TF}=\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathbf{G}(\mathbf{S}) \mathbf{H}(\mathbf{S})$

$$
=\mathbf{K} /[(\mathbf{S}+\mathbf{3})(\mathbf{S}+\mathbf{2})(\mathbf{S}+\mathbf{1})]=30 /\left[\mathbf{S}^{3}+6 \mathrm{~S}^{2}+11 \mathrm{~s}+6\right]
$$

2- Find the freq.open loop TF=

$$
\mathbf{G}(\mathbf{j} \omega) \mathbf{H}(\mathbf{j} \boldsymbol{\omega})=\frac{30}{[(\mathrm{j} \omega+3)(\mathrm{j} \omega+2)(\mathrm{j} \omega+1)]}=\mathrm{Me}^{\mathrm{j} \Phi}=M\llcorner\Phi=\mathrm{Re}+\mathrm{j} \mathrm{imag}
$$

$$
\begin{gathered}
M=\frac{30}{\sqrt{1+\omega^{2}} \sqrt{4+\omega^{2}} \sqrt{9+\omega^{2}}}, \\
\left.\Phi=-\boldsymbol{\operatorname { t a n }}^{-1}(\boldsymbol{\omega})-\boldsymbol{\operatorname { t a n }}^{-1}(\boldsymbol{\omega} / \mathbf{2})-\boldsymbol{\operatorname { t a n }}^{-1}(\boldsymbol{\omega} / \mathbf{3})\right] \\
M=\frac{30}{\sqrt{1+\omega^{2}} \sqrt{4+\omega^{2}} \sqrt{9+\omega^{2}}}=\frac{30}{\sqrt{1+2.35^{2}} \sqrt{4+2.35^{2}} \sqrt{9+2.35^{2}}}=1 \\
M=\frac{30}{\sqrt{1+\omega^{2}} \sqrt{4+\omega^{2}} \sqrt{9+\omega^{2}}}=\frac{30}{\sqrt{1+2.35^{2}} \sqrt{4+2.35^{2}} \sqrt{9+2.5^{2}}}=1 \\
M=\frac{30}{\sqrt{1+\omega^{2}} \sqrt{4+\omega^{2}} \sqrt{9+\omega^{2}}}=\frac{30}{\sqrt{1+3.32^{2}} \sqrt{4+3.32^{2}} \sqrt{9+3.2^{2}}}=0.5 \\
\left.\Phi=-\tan ^{-1}(3.32)-\boldsymbol{\operatorname { t a n }}^{-1}(3.32 / 2)-\boldsymbol{\operatorname { t a n }}^{-1}(3.32 / 3)\right]=-180 \mathrm{deg} .
\end{gathered}
$$

$\left.\Phi=-\tan ^{-1}(2.35)-\tan ^{-1}(2.35 / 2)-\tan ^{-1}(2.35 / 3)\right]=-154.6 \mathrm{deg}$.
$\gamma_{m}=\angle \mathrm{G}\left(\mathrm{j} \omega_{g}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right)+180$ deg. $=180-154.6=25.4 \mathrm{deg}$.

3- Find the table

ω	0	0.1	1	2.35	3.32	5	10	∞
Φ	0	-10.5	-90	-155	-180	-206	-236	-270
\mathbf{M}	5	4.97	3	1	0.5	0.2	0.03	0
$20 \operatorname{logM}$	14	13.9	9.5	0	6.4	-14.6	-31.1	0
Real $\mathbf{G}(\mathbf{j} \boldsymbol{\omega} \mathbf{)} \mathbf{H}(\mathbf{j} \omega)$	5		0					0
Imag $\mathbf{G}(\mathbf{j} \omega) \mathbf{H}(\mathbf{j} \boldsymbol{\omega})$	0		-3		0			0

4- Plot the vector on the $\mathbf{j} \boldsymbol{\omega}$ - plane where Φ in degrees as a straight line and determine M on this line
5- Plot the locus of the vector as points from the table
6- Find the gain and the phase margins from the plot

Prog. $\gg \mathrm{n}=[1] ; \mathrm{d}=\left[\begin{array}{llll}1 & 6 & 1 & 1 \\ 6\end{array}\right]$;
>> nyquist(n, d) >> margin(n, d) >> nichols(n, d)

