جامعة بنها كلية الهندسة ببنها قسم الهندسة الكهربية نموذج الإجابة امتحان مادة هندسة التحكم ك352 تخلفات مايو 2013 مدرس بالقسم شوقي حامد عرفه

Benha University, Faculty of Engineering
Subject: Control Engineering (E352)

Elect.Eng.Depart. Third Year 2013

Time: 3-hours

Answer

Q1 a- Define: ω_n , ω_d , ω_r , ω_B , ω_c , ω_g , ω_p , M_r , η , G_m , γ_m ? (15 marks)

- -Natural frequency ω_n rad/sec: it is the natural frequency depends on the natural of the system parameters.
- Under damped natural frequency ω_d rad/sec: it is the under damped natural frequency depends on the damping coefficient η as it is less than one $\eta < 1$.
- -Resonant frequency ω_r rad/sec: it is the frequency at which the peak value of the output frequency response for a second order is equal to $\omega_r = \omega_n \sqrt{1-2\zeta^2}$

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, \quad \text{for } 0 \le \zeta \le 0.707$$

As ζ approaches zero, M_r approaches infinity $0 < \zeta \le 0.707$, the resonant frequency ω_r is less than the damped natural frequency

- -Cut off frequency ω_B rad/sec: it is the frequency at which the magnitude of the output frequency response is equal to $(=\frac{1}{\sqrt{2}})$ of the low frequency.
- -Corner frequency ω_c rad/sec: it is the frequency at which the magnitude of the output frequency response is changed sharply. It may be $(0, 1, 1/T, \omega_n)$
- -Gain crossover frequency ω_g : it is the frequency at which the magnitude of the output frequency response is equal to one or zero decibel.

$$|G(j \omega g)H(j \omega g)| = 1$$
 or $|G(j \omega g)H(j \omega g)| = 0db$

-Phase crossover frequency ω_p : it is the frequency at which the phase of the output frequency response is equal to (-180) degrees.

Imag. [
$$G(j \omega_p)H(j \omega_p)$$
]=0 or $\angle G(j \omega p)H(j \omega p) = -180 \text{deg}$.

-Maximum resonant magnitude M_r : it is the peak value of the output frequency response for a second order system $M_r=\frac{1}{2\zeta\sqrt{1-\zeta^2}}$

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad M_r = |G(j\omega)|_{\max} = |G(j\omega_r)| = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

-damping coefficient $\boldsymbol{\eta}\,$ it depends on the natural of the system parameters. For second order system

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Values of η	System stability	Step-response		
0> η	System is unstable	undefined		
$\eta = 0$ System is critically stable		oscillatory		
0< η <1	System is stable	Under-damped		
0< η = 1	System is stable	Critically damped		
0<η>1	System is stable	Over damped		

-Gain margin G_m : it is reciprocal of the magnitude of the output frequency response at the **Phase crossover frequency** ω_p

$$G_m$$
=1/[Real of $G(j \omega_p)H(j \omega_p)$]= 1/ $|G(j \omega p)H(j \omega p)|$ = K_c/K
 G_M =20log G_m db

-Phase margin γ_m : it is the angle of the output frequency response at the **gain crossover** frequency plus 180 degrees.

$$\gamma_m = \angle G(j \omega_g) H(j \omega_g) + 180 \text{ deg.}$$

b- Consider a control system shown in Fig.1 if G(S) = 4/[S(S+2)], H(S) = 1

i-Find the **frequency response** as $r(t)=5\sin\omega t$? ii-Calculate M_r , ω_r ?

Frequency Response: it means the steady state output of a 1-linear 2-time-invariant 3- stable control system to a sinusoidal input and it is a sinusoidal with phase shift positive or negative and does not depend on the initial conditions.

b-Steps to find frequency Response:

1- the closed loop transfer function =T(s)=C(S)/R(S)=

$$C(S) / R(S) = \frac{G(S)}{1 + G(S)H(S)} = \frac{\omega_n^2}{S^2 + 2\eta\omega_n S + \omega_n^2} = \frac{4}{S^2 + 2S + 4}, \ \omega_n = \frac{2\text{rad}}{\text{sec}} \ \zeta = 0.5$$

2-the closed loop frequency transfer function =

$$T (j\omega)=C(j\omega)/R(j\omega) = \frac{4}{(j\omega)^2 + 2(j\omega) + 4} = M \perp \Phi = \text{Re+j imag}$$

$$M = \frac{4}{\sqrt{(4-\omega^2)^2 + 4\omega^2}} , \Phi = \tan^{-1}[2\omega/(4-\omega^2)]$$

3-As the input $=r(t) = 5sin\omega t$ then

the response =
$$C(t) = 5Msin(\omega t + \Phi)$$

= $\frac{20}{\sqrt{(4-\omega^2)^2+4\omega^2}} sin[\omega t + tan^{-1}[2\omega/(4-\omega^2)]$

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} = \frac{1}{2(0.5)\sqrt{1-(0.5)^2}} = 1.155$$
 $\omega_r = \omega_n\sqrt{1-2\zeta^2} = 2\sqrt{1-2(0.5)^2} = 1.414 \ rad/sec.$
Q2 (15 marks)

Consider a control system shown in Fig.1 if G(S) = K/[(S+3)(S+2)], H(S) = 1/(S+1)

- a- Sketch the **complete root locus** for positive values of **K**?
- b- Find **K** that makes the complex closed loop poles have a damping ratio =**0.6** and **find the closed loop poles** using **the plot**?
- c- Find **K** that makes the complex closed loop poles have a damping ratio =**0.6** and **find the** closed loop poles analytically?
- d- Write short MATLAB program to solve **a** and solve **b**?

Root locus:

1-the root locus is symmetrical about the real axis in the S-plane

2-the open loop TF=G(s) H(s)=G(S) H(S) = $K/[(S+3)(S+2)(S+1)]=K/[S^3+6S^2+11s+6]$

3-the root locus starts at the pole and ends at the zero or infinity

4-number of root loci= n=number of poles of the open loop TF =3 at [-1,-2,-3]

5-number of zeros= m=0

6-number of asymptotes = n-m=3-0=3

8-center of gravity = $A = \frac{\sum poles - \sum zoles}{n-m} = \frac{-1-2-3}{3} = -2$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are
$$=\theta = \frac{\pm 180(2R+1)}{n-m} = \pm 60,\pm 180$$

10- Points of crossing the imaginary axis as Routh test

Charct.equa=
$$1+G(S)H(S)=0=S^3+6S^2+11s+6+K$$

S^3	1	11	6+K≥0, [66-6-K]/ 6≥0 then -
S^2	6	6+K	6≤K≤60,Kc=60
S	[66-6-K]/ 6		$6S^2 + 6 + 60 = 0$, $S = i \omega = \sqrt{11} \text{ rad/sec}$
S^0	6+K		05 10100=0, 5=j @ = v 111aa/sec

11- break points (break away or break in) at

$$-\frac{dK}{dS} = 0 = \frac{d}{dS} \left[\frac{1}{G(S)H(S)} \right] = \frac{d}{dS} \left[S^3 + 6S^2 + 11s + 6 \right] = 3S^2 + 12s + 11 = 0$$

S=-2.6 refused, S=-1.4 is a break- away point

12-break angles at $[\pm 180(2R+1)/r]$ where r=number of branches(poles for break away or zeros for break in) R=0,1,---- break angles at $[\pm 180]/2=\pm 90$

13-there is no angle of departure (complex poles)

14- there is no angle of arrival (complex zeros)

15-sketch the root loci as

16- the damping factor or coefficient ζ is straight line with slope $\Theta = \cos^{-1} \zeta$

with respect to the negative real axis in the S-plane. $\Theta = \cos^{-1} 0.6 = 53.13 \text{deg.}$ at the test point (intersection point) $S_d = -1 \pm j1.4$

angle condition =
$$\sum_{n=1}^{n=3} [\theta_{zeros} - \theta_{poles}] = \pm 180(2R + 1) = 90 + 54 + 36 = 180 \text{ deg}$$

magnitude condition =
$$\sum_{n=1}^{n=3} \frac{\|poles\|}{\|zeros\|} = K = 1.4 * 1.6 * 2.4 = 5.3$$

$$\sum_{n=1}^{n=3} \textit{open loop poles} = \sum_{n=1}^{n=3} \textit{closed loop poles} = \textit{constant as } n-m \geq 2$$

$$\sum_{n=1}^{n=3} \textit{open loop poles} = -1 - 2 - 3 = -6 = \sum_{n=1}^{n=3} \textit{closed loop poles} = 2(-1) \pm j1.4 + p$$

then
$$p = -4$$
 i. e. closed loop poles are $[-1 \pm j1.4, -4]$

19- To find analytically closed loop poles and K as

 $(S^2+2~\zeta~\omega_n~S+~\omega_n^{~2})(S+a)=$ characteristic equa. for a third order syst.

Solve
$$1+G(S)H(S)=0=S^{3}+6S^{2}+11s+6+K=(S^{2}+1.2 \omega_{n} S+\omega_{n}^{2})(S+a)$$
$$=S^{3}+(1.2 \omega_{n} +a)S^{2}+(1.2 \omega_{n} a+\omega_{n}^{2})S+\omega_{n}^{2} a$$

$$1.2 \omega_n + a = 6$$
,,, $1.2 \omega_n a + \omega_n^2 = 11$,,, $\omega_n^2 a = k + 6$

Prog. >>n=[1];d=[1 6 11 6]; rlocus(n,d), grid

Q3 (30marks)

Consider a control system shown in Fig. 1 if H(s)=1/(S+2), G(s)=k/(S+1)(s+3),

- a- Prove that the gain margin=6.02db at 3.32rad/sec. and the phase margin=25.4 degrees at 2.35rad/sec. as **K=30**?
- b- Sketch the polar plot as K=30?
- c- Sketch the **Bode plot as K=30**?
- d- Find the gain margin and the phase margin using **the plots**?
- e- Write a short MATLAB program to solve b, c and d?
- f- Write short MATLAB program to Sketch the **Nichols plot**?
- 1- the open loop TF=G(s) H(s)= G(S) H(S) = $K/[(S+3)(S+2)(S+1)]=30/[S^3+6S^2+11s+6]$
- 2- Find the freq.open loop TF=

$$G(j\omega)H(j\omega)=\frac{30}{[(j\omega+3)(j\omega+2)(j\omega+1)]}=Me^{j\Phi}=M\perp\Phi=Re+j$$
 imag

$$\emph{M}=rac{30}{\sqrt{1+\omega^2}\sqrt{4+\omega^2}\,\sqrt{9+\omega^2}}$$
 ,

$$\Phi = -\tan^{-1}(\omega) - \tan^{-1}(\omega/2) - \tan^{-1}(\omega/3)$$

$$M = \frac{30}{\sqrt{1+\omega^2}\sqrt{4+\omega^2}} = \frac{30}{\sqrt{1+2.35^2}\sqrt{4+2.35^2}} = 1$$

$$M = \frac{30}{\sqrt{1 + \omega^2}\sqrt{4 + \omega^2}} = \frac{30}{\sqrt{1 + 2.35^2}\sqrt{4 + 2.35^2}} = 1$$

$$M = \frac{30}{\sqrt{1 + \omega^2}\sqrt{4 + \omega^2}} = \frac{30}{\sqrt{1 + 3.32^2}\sqrt{4 + 3.32^2}\sqrt{9 + 3.32^2}} = 0.5$$

$$\Phi = -\tan^{-1}(3.32) - \tan^{-1}(3.32/2) - \tan^{-1}(3.32/3)] = -180 \text{ deg}.$$

$$\begin{split} & \Phi = -\tan^{-1}(2.35) - \tan^{-1}(2.35/2) - \tan^{-1}(2.35/3)] = -154.6 \text{ deg.} \\ & \gamma_m = \angle \mathsf{G} \big(\mathsf{j} \ \omega_g \big) \mathsf{H} \big(\mathsf{j} \ \omega_g \big) + 180 \text{ deg.} = 180 - 154.6 = 25.4 deg. \end{split}$$

3- Find the table

ω	0	0.1	1	2.35	3.32	5	10	∞
Φ	0	-10.5	-90	-155	-180	-206	-236	-270
M	5	4.97	3	1	0.5	0.2	0.03	0
20logM	14	13.9	9.5	0	6.4	-14.6	-31.1	0
Real G(jω)H(jω)	5		0					0
Imag G(jω)H(jω)	0		-3		0			0

- 4- Plot the vector on the $\mathbf{j}\boldsymbol{\omega}$ \mathbf{plane} where Φ in degrees as a straight line and determine M on this line
- 5- Plot the locus of the vector as points from the table
- 6- Find the gain and the phase margins from the plot

