

a. <u>Design</u> a common bus system between 4 registers (R1, R2, R3 and R4) each of 4-bits using tri-state buffers and decoders.

Answer:

b. Starting from an initial value of R = 11001001, <u>determine</u> the sequence of binary values in R after a logical shift-left, followed by a circular shift-right, followed by a logical shift-right and a circular shift-left.

Answer:	
Micro-operation	R
Initially	11001001
R 🗲 shl R	10010010
$R \leftarrow cir R$	01001001
R 🗲 shr R	00100100
R 🗲 cil R	01001000

- c. A digital computer has a common BUS system for 4 registers of 16-bit each; this bus system uses MUXs and a decoder to allow data transfer between any two registers at a time. For this system do the following:
 - i. How many multiplexers are there in the bus? 16 MUXs
 - ii. What is the size of each multiplexer?4X1 MUX's

2. **Design** an arithmetic circuit with one selection variable S and two n-bit data inputs A and B. The circuit generates the following 4 arithmetic operations in conjunction with the input carry C_{in} . **Draw** the logic diagram for the first two stages.

S	C	in = 0	$C_{in}=1$		
0	D = A + B	(add)	D=A+1	(increment)	
1	D = A-1	(decrement)	D=A+B'+1	(subtract)	

Answer:

3. The following control inputs are active in the bus system shown in Fig.(1). For each case, **specify** the register transfer that will be executed during the next clock transition

	S 2	S 1	S 0	LD of register	Memory	Adder
a.	1	1	1	IR	Read	
b.	1	1	0	PC		
с.	1	0	0	DR	Write	
d.	0	0	0	AC		Add

Answer:

Question	S2	S1	S0	LD of register	Memory	Adder	Solution
A	1	1	1	IR	Read		IR < M[AR]
В	1	1	0	PC			PC < TR
С	1	0	0	DR	Write		DR <- AC,M[AR] < AC
d	0	0	0	AC		Add	AC <- AC + DR

4. Consider the basic computer registers connected to a common bus system shown in Fig.(1). For each indicated micro-instruction, <u>complete</u> the following table:

Microin	nstruction	Bus select		Source	Destination Register			Memory			
		S 2	S 1	S 0	Register	Name	LD	INR	CLR	Read	Write
AR 🗲	PC	0	1	0	РС	AR	1	0	0	0	0
PC 🗲	PC+1	0	1	0	PC	PC	0	1	0	0	0
IR 🗲	M[AR]	1	1	1	Μ	IR	1	0	0	1	0
AR 🗲	IR	1	0	1	IR	AR	1	0	0	0	0
DR 🗲	M[AR]	0	1	1	Μ	DR	1	0	0	1	0
TR 🗲	0	0	0	0	TR	TR	0	0	1	0	0

5. The register transfer statements for a register R and the memory in a computer are as follows (the X's are control functions)

$X'_{3}X_{1}$:	R ← M[AR]	Read Memory word into R
$X'_{1}X_{2}$:	R 🗲 AC	Transfer AC to R
$X'_{1}X_{3}$:	M[AR] 🗲 R	Write R to Memory

The memory has data inputs, data outputs, address inputs, and control inputs to read and write. **Draw the hardware implementation of R and the memory in block** <u>diagram form</u>.

Answer:

