جامعة بنها - كلية الهندسة ببنها - قسم الهندسة الكهربية نموذج الإجابة امتحان مادة هندسة التحكم ك1236 تخلفات مايو يوم الاربعاء الموافق 25-5-2016 مدرس بالقسم شوقي حامد عرفه

Benha University	Time: 3-hours		
Benha Faculty of Engineering	Second Year 25-5-2016		100
Control Engineering (E1236)	تخلفات.Elect.Eng.Dept	AND THE REAL PROPERTY OF THE REAL	And the second

Solve as much as you can questions in two pages

<u>Q1</u>

(20marks)

a-Write a mathematical model represents the physical systems shown in Fig.1, and Fig.2?

b- Draw a block diagram represents the system shown in Fig.2 and using block reduction method to find Y(S)/U(S)?

c-Write the most important features of **a good** control system?

d-Write the most important **advantages and disadvantages** of the **open** loop and the **closed** loop control systems?

<u>Q2</u>

Consider a system shown in Fig. 3 H(s) = 1, $G(s) = \frac{K}{S(S+4)}$

a-Find the steady state static error coefficients?

b- Find the gain **K** such that the steady state error =0.02?

c- Find and draw the **unit step response** as K=16?

d- Find the **frequency response** and M_r and ω_r as K=16 and r(t)=2sin ωt ?

Consider a control system shown in Fig.3 if

$$G(s)H(s) = \frac{k}{(S+1+j)(S+2)(S+1-j)} = \frac{k}{S^3+4S^2+6S+4}$$

- a- Sketch the complete root locus for positive values of K?
- b- Find K that makes the complex closed loop poles have a damping ratio =0.5 and find the closed loop poles using the plot?
- c- Find **K** that makes the complex closed loop poles have a damping ratio =**0.5** and **find the closed loop poles analytically**?
- d- Write short MATLAB program to solve a & b?

(30 marks)

- a- Define: gain margin- phase margin?
- b-Define: ω_n , ω_d , ω_r , ω_c , ω_g , ω_p , M_r , η ?
- c- Consider a control system shown in Fig.3 if

$$G(s)H(s) = \frac{10}{(S+1+j)(S+2)(S+1-j)} = \frac{10}{S^3 + 4S^2 + 6S + 4}$$

- a- Prove that the gain margin=6.02 db at 2.45 rad/sec. and the phase margin= 30.3 degrees at 1.78 rad/sec.?
- b- Sketch the polar plot?
- c- Sketch the Bode plot?
- d- Show the gain margin and the phase margin on the plots?
- e- Write short MATLAB program to solve a, b and C?

Answer

(20marks)

a-Write a mathematical model represents the physical systems shown in Fig.1, and Fig.2?

Fig.1

<u>Q1</u>

$$\sum_{1}^{n} V_{loop} = 0 \ then \ e_i = R \frac{dq}{dt} + L \frac{d^2q}{dt^2} + \frac{q}{C}, \ i = \frac{dq}{dt}, \qquad e_o = \frac{\int i dt}{C} = \frac{q}{C}$$

Fig.2

$$ma = \sum F = m\ddot{y} = U - b\dot{y} - Ky,$$

Q4

b- Draw block diagram represents the system shown in Fig.2 and using block reduction method to find Y(S)/U(S)?

c-Write the most important features of **a good** control system?

Most important features of a good control system: are

1-simple construction and operation 2-fast response (speed) 3-less cost

4-very large accuracy (less error) 5-stable

d-Write the most important **advantages and disadvantages** of the **open** loop and the **closed** loop control systems?

Open loop control system

Advantages of open loop	disadvantages of open loop
1-simple construction	1-disturbances cause errors
2- ease of maintenance	2-changes in calibration cause errors
3-less expensive	3-recalibration is necessary
4-no stability problem	
5-convenient when output is hard to	
measured or economically not feasible	

Closed loop control system

Disadvantages of closed loop	advantages of closed loop
1-complex construction	1-disturbances do not cause errors
2- stability may be a problem	2- has less errors
3-more expensive	3-recalibration is not necessary
	4-the ability to adjust the response

<u>Q2</u>

(20 marks)

Consider a system shown in Fig. 3 as H(s) = 1, $G(s) = \frac{K}{S(S+4)}$

a- Find the steady state static error coefficients?

It must convert non-unity feedback to unity feedback as

$$K_{p} = \lim_{0} G(S) = \lim_{0} \frac{K}{S(S+4)} = \frac{K}{(0)(0+4)} = \infty$$

$$K_{v} = \lim_{0} SG(S) = \lim_{0} \frac{K}{(S+4)} = \frac{K}{(0+4)} = 0.25K$$

$$K_{a} = \lim_{0} S^{2}G(S) = \lim_{0} \frac{SK}{(S+4)} = 0$$

b-Find the gain **K** such that the steady state error =0.02?

$$e_{ss}(t) = \frac{1}{K_v} = \frac{1}{0.25K} = 0.02, K = 200$$
 Routh test as K=200, system is stable

c-Find and draw the unit step response as K=16?

$$\frac{C(S)}{R(S)} = \frac{G(s)}{1 + G(S)H(S)} = \frac{\omega_n^2}{S^2 + 2\eta\omega_n S + \omega_n^2} = \frac{16}{S^2 + 4S + 16}, \omega_n = 4 \text{ rad/sec.}, \ \eta = 0.5$$

The step response is under damped Step response of a second order system R(S)=1/s

$$C(S) = \text{closed loop T.F}(S) * R(S) = \frac{\omega_n^2 R(S)}{S(S^2 + 2\eta \omega_n S + \omega_n^2)} = \frac{16}{S(S^2 + 4S + 16)}$$
$$= \frac{a}{S} + \frac{bs+d}{(S^2 + 4S + 16)} \text{ partial fraction },$$

C(t)= inverse Laplace of the product of closed loop t.f.(S) and R(S)=1/s with zero initial conditions C(t)= $L^{-1}[(C(S)]$ = $L^{-1}[closed loop t.f.(S)*R(S)]$ with zero initial conditions]

$$\eta=0.5, \omega_n=4rad/sec$$
. $\omega_d=~\omega_n\sqrt{1-\eta^2}=3.5\,rad/sec$, $\cos^{-1}0.5=pi/3$

$$C(t) = 1 - \frac{e^{-\eta \ \omega_n t}}{\sqrt{1 - \eta^2}} \sin(\omega_d t + \cos^{-1}\eta) = 1 - 1.155e^{-2t}\sin(1.732t + pi/3)$$

$$M_{p=}e^{\frac{-\eta\pi}{\sqrt{1 - \eta^2}}} = 0.163, t_r = \frac{\pi - \cos^{-1}\eta}{\omega_d} = \frac{\pi - \frac{pi}{3}}{3.5} = 0.6sec,$$

$$t_p = \frac{\pi}{\omega_d} = 0.9sec., t_s = 4T = \frac{4}{\eta\omega_n} = 2sec.$$

Find the **frequency response** and M_r and ω_r as K=4 and r(t)=5 sin ωt ?

d-Find the **frequency response** and M_r and ω_r as K=16 and r(t)=2sin ωt ?

$$\frac{C(S)}{R(S)} = \frac{G(S)}{1 + G(S)H(S)} = \frac{\omega_n^2}{S^2 + 2\eta\omega_n S + \omega_n^2} = \frac{16}{S^2 + 4S + 16}$$

$$\omega_n = 4 \text{ rad/sec.}, \ \eta = 0.5, M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} = \frac{1}{2(0.5)\sqrt{1-(0.5)^2}} = 1.155$$

$$\omega_{\rm r} = \omega_{\rm n} \sqrt{1 - 2\zeta^2} = 4\sqrt{1 - 2(0.5)^2} = 2.818 \, {\rm rad/sec.}$$

the frequency response as $r(t)=2\sin\omega t$. Steps to find frequency Response:

1- the closed loop transfer function =T(s)=C(S)/R(S) =

$$\frac{C(S)}{R(S)} = \frac{G(S)}{1 + G(S)H(S)} = \frac{\omega_n^2}{S^2 + 2\eta\omega_n S + \omega_n^2} = \frac{16}{S^2 + 4S + 16}$$

2-the closed loop frequency transfer function =

T (j
$$\omega$$
)=C(j ω)/R(j ω) = $\frac{16}{(j\omega)^2 + 4(j\omega) + 16}$ = M $\sqcup \Phi$ =Re+j imag

$$M = \frac{16}{\sqrt{(16 - \omega^2)^2 + 16\omega^2}} , \Phi = \tan^{-1}[4\omega/(16 - \omega^2)]$$

3-As the input $=r(t) = 3sin\omega t$ then

the response =
$$C(t) = 2Msin(\omega t + \Phi)$$

= $\frac{32}{\sqrt{(16-\omega^2)^2+16\omega^2}} sin[\omega t + tan^{-1}[4\omega/(16-\omega^2)]$

(15 marks)

Consider a control system shown in Fig.3 if

$$G(s)H(s) = \frac{k}{(S+1+j)(S+2)(S+1-j)} = \frac{k}{S^3+4S^2+6S+4}$$

- a- Sketch the complete root locus for positive values of K?
- b- Find **K** that makes the complex closed loop poles have a damping ratio =**0.5** and **find the closed loop poles** using **the plot**?
- c- Find **K** that makes the complex closed loop poles have a damping ratio =**0.5** and **find the closed loop poles analytically**?
- d- Write short MATLAB program to solve a & b?

a-Root locus:

1-the root locus is symmetrical about the real axis in the S-plane

2-the open loop G(s)H(s) = $\frac{k}{(S+1-j)(S+2)(S+1+j)} = \frac{k}{S^3+4S^2+6S+4}$

3-the root locus starts at the pole and ends at the zeros or infinity

4-number of root loci= n=number of poles of the open loop TF =3 at [-1+j,-1-j,-2]

Q3

5-number of zeros= m=0

6-number of asymptotes = n-m=3-0=3

8-center of gravity = $A = \frac{\sum poles - \sum zoles}{n-m} = \frac{-1-1-2}{3} = -1.3$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are = $\Theta = \frac{\pm 180(2R+1)}{n-m} = \pm 60, \pm 180$

10- Points of crossing the imaginary axis as Routh test

Charct.equa=1+G(S)H(S)=0= $S^{3}+4S^{2}+6s+4+K$

S^3	1	6	$4+K\geq 0$, [20-K]/ $4\geq 0$ then $-4\leq K\leq 20$, Kc=20
S^2	4	4+K	$4S^2+24=0$, $S=\pm j\omega=\pm\sqrt{6}$ rad/sec
S	[24-4-K]/ 4		
S^0	4+K		

11- there is no break points (break away or break in) at

$$-\frac{dK}{dS} = 0 = \frac{d}{dS} \left[\frac{1}{G(S)H(S)} \right] = \frac{d}{dS} \left[S^3 + 4S^2 + 6s + 4 \right] = 3S^2 + 8s + 6 = 0$$

12- There is no break angles $[\pm 180(2R+1)/r]$ where r=number of branches(poles for break away or zeros for break in) R=0,1,----no break angles

13-the angle of departures (complex poles) =

Angle of departure from a complex pole - 180°

- (sum of the angles of vectors to a complex pole in question from other poles)

+ (sum of the angles of vectors to a complex pole in question from zeros)

angle of departure=±180-90-45=±45deg

14-angle of arrival (complex zeros) as

Angle of arrival at a complex zero = 180°

- (sum of the angles of vectors to a complex zero in question from other zeros)

+ (sum of the angles of vectors to a complex zero in question from poles)

15-sketch the root loci as

16- the damping factor or coefficient ζ is straight line with slope $\Theta = \cos^{-1} \zeta$

with respect to the negative real axis in the S-plane. $\Theta = \cos^{-1} 0.5 = 60$ deg. at the test point (intersection point) S_d=-0.8±j1.3

angle condition =
$$\sum_{n=1}^{n=3} [\Theta_{zeros} - \Theta_{poles}] = \pm 180(2R + 1) = 90 + 54 + 36 = 180 \text{ deg}$$

magnitude condition = $\sum_{n=1}^{n=3} \frac{||\text{poles}||}{||\text{zeros}||} = K = * * = 1.5$
 $\sum_{n=1}^{n=3} open \ loop \ poles = \sum_{n=1}^{n=3} closed \ loop \ poles = \text{constant as } n - m \ge 2$
 $\sum_{n=1}^{n=3} open \ loop \ poles = -1 - 2 - 1 = -4 = \sum_{n=1}^{n=3} closed \ loop \ poles$
 $= (-0.8 + j1.3, -0.8 - j1.3, p)$
then $p = -2.4$ i. e. closed loop poles are $[-0.8 \pm j1.3, -2.4]$

19- To find analytically closed loop poles and K as

 $(S^2+2\zeta \omega_n S+\omega_n^2)(S+a)$ =characteristic equa. for a third order syst.

Solve $1+G(S)H(S)=0=S^3+4S^2+6s+4+K=(S^2+\omega_n S+\omega_n^2)(S+a)$

$$= S^{3} + (\omega_{n} + a)S^{2} + (\omega_{n} a + \omega_{n}^{2})S + \omega_{n}^{2} a$$

 ω_n +a =4 , ω_n a+ ω_n^2 =6 , ω_n^2 a=k+4,then ω_n =1.5rad/se., a=2.5,k=1.74

Prog. >>n=[1];d=[1 4 6 4]; rlocus(n,d), grid

a- Define: gain margin- phase margin? -Gain margin G_m: it is reciprocal of the magnitude of the output frequency response at the Phase crossover frequency ω_p G_m=1/[Real of G(j ω_p)H(j ω_p)]= 1/|G(j ωp)H(j ωp)| =K_c/K G_M=20log G_m db -Phase margin γ_m : it is the angle of the output frequency response at the gain crossover frequency plus 180 degrees. $\gamma_m = \angle G(j \omega_g) H(j \omega_g) + 180 \text{ deg.}$

(30 marks)

b-Define: ω_n , ω_d , ω_r , ω_c , ω_g , ω_p , M_r , η ?

-Natural frequency ω_n rad/sec: it is the natural frequency depends on the natural of the system parameters.

- Under damped natural frequency ω_d rad/sec: it is the under damped natural frequency depends on the damping coefficient η as it is less than one $\eta < 1$.

-Resonant frequency ω_r rad/sec: it is the frequency at which the peak value of the output frequency response for a second order is equal to $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$

 $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, \quad \text{for } 0 \le \zeta \le 0.707$

As ζ approaches zero, M_r approaches infinity $0 < \zeta \le 0.707$, the resonant frequency ω_r is less than the damped natural frequency

-Corner frequency ω_c rad/sec: it is the frequency at which the magnitude of the output frequency response is changed sharply. It may be (0, 1, 1/T, ω_n)

-Gain crossover frequency ω_g : it is the frequency at which the magnitude of the output frequency response is equal to one or zero decibel.

 $|G(j \boldsymbol{\omega} \mathbf{g})H(j \boldsymbol{\omega} \mathbf{g})| = 1$ or $|G(j \boldsymbol{\omega} \mathbf{g})H(j \boldsymbol{\omega} \mathbf{g})| = 0db$

-Phase crossover frequency ω_p : it is the frequency at which the phase of the output frequency response is equal to (-180) degrees.

Imag. [$G(j \omega_p)H(j \omega_p)$]=0 or $\angle G(j \omega p)H(j \omega p) = -180$ deg.

Q4

-Maximum resonant magnitude M_r: it is the peak value of the output frequency response for a second order system $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \qquad M_r = |G(j\omega)|_{\max} = |G(j\omega_r)| = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

-damping coefficient $\eta\,$ it depends on the natural of the system parameters. For second order system

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Values of η	System stability	Step-response		
0>η	System is unstable	undefined		
η=0	System is critically stable	oscillatory		
$0 < \eta < 1$	System is stable	Under-damped		
0< η =1	System is stable	Critically damped		
0<η>1	System is stable	Over damped		

c-Consider a control system shown in Fig.1 if

$$G(s)H(s) = \frac{10}{(S+1+j)(S+2)(S+1-j)} = \frac{10}{S^3 + 4S^2 + 6S + 4}$$

- a- Prove that the gain margin=6.02 db at 2.45 rad/sec. and the phase margin= 30.3 degrees at 1.78 rad/sec.?
- b- Sketch the polar plot?
- c- Sketch the **Bode plot**?
- d- Show the gain margin and the phase margin on the plots?
- e- Write short MATLAB program to solve a, b and C?
- 1- the open loop TF=G(s) H(s)= G(S) H(S)

$$G(s)H(s) = \frac{10}{(S+1+j)(S+2)(S+1-j)} = \frac{10}{S^3 + 4S^2 + 6S + 4}$$

2- Find the freq.open loop TF=

 $\mathbf{G}(\mathbf{j}\boldsymbol{\omega})\mathbf{H}(\mathbf{j}\boldsymbol{\omega}) = \frac{10}{\mathbf{S}^3 + 4\mathbf{S}^2 + 6\mathbf{S} + 4} = \mathbf{M}\mathbf{e}^{\mathbf{j}\Phi} = \mathbf{M} \sqsubseteq \Phi = \mathbf{R}\mathbf{e} + \mathbf{j} \text{ imag}$

$$\begin{split} M &= \frac{10}{\sqrt{(4-4\omega^2)^2 + (6\omega-\omega^3)^2}} \quad , \Phi = -\tan^{-1}((6\omega-\omega^3)/(4-4\omega^2)) \\ M &= \frac{10}{\sqrt{(4-4\omega^2)^2 + (6\omega-\omega^3)^2}} = \frac{10}{\sqrt{(4-4\omega^2)^2 + (6\omega-\omega^3)^2}} = 1 \\ M &= \frac{10}{\sqrt{(4-4(1.78)^2)^2 + (6(1.78) - (1.78)^3)^2}} = 1, \text{ then } \omega_g = 1.78 \text{ rad/sec.} \\ \Phi &= -\tan^{-1}((6\omega-\omega^3)/(4-4\omega^2)) = -\tan^{-1}((6*2.45-2.45^3)/(4-4*2.45^2)) = -4 \\ M &= -\tan^{-1}((6\omega-\omega^3)/(4-4\omega^2)) = -\tan^{-1}((6*2.45-2.45^3)/(4-4*2.45^2)) = -4 \\ M &= -\tan^{-1}((6\omega-\omega^3)/(4-4\omega^2)) = -\tan^{-1}((6\omega-\omega^3)/(4-4\omega^2)) = -4 \\ M &= -4 \\ M$$

then $\omega_p = 2.45 rad/sec$.

180 deg.

$$M = \frac{10}{\sqrt{(4 - 4(2.45)^2)^2 + (6(2.45) - (2.45)^3)^2}} = 0.5, \text{ then } G_M = 20 \log \frac{1}{0.5} = 6.02 db$$

$$\Phi = -\tan^{-1}((6\omega - \omega^3)/(4 - 4\omega^2)) = -\tan^{-1}((6*1.78 - 1.78^3)/(4 - 4*1.78^2)) = -149.7 \text{ deg.}$$

$$\gamma_m = \angle G(j \,\omega_g) H(j \,\omega_g) + 180 \, \text{deg.} = 180 - 149.7 = 30.3 \, \text{deg.}$$

ω	0	0.1	1	1.78	2.45	5	10	∞
Φ	0			-150	-180	-		-270
М	2.5		2	1	0.5			0
20logM	8		6.02-	0	6.02	-	-	0
Real G(jω)H(jω)	2.5		0		-0.5			0
Imag G(jω)H(jω)	0		-2		0			0

3- Find the table

- 4- Plot the vector on the $\mathbf{j}\boldsymbol{\omega}$ **plane** where Φ in degrees as a straight line and determine M on this line
- 5- Plot the locus of the vector as points from the table
- 6- Find the gain and the phase margins from the plot

<u>Prog.</u> >>n=[10]; d=[1 4 6 4];

>> nyquist(n,d) >> margin(n,d) >> nichols(n,d)

