جامعة بنها ـ كلية الهندسة ببنها ـ قسم الهنسسة الكهربية
نموذج الإجابة امتحان مادة هندسة التحكم كـ1236 تخلفات مايو يوم الاربعاء الموافق 25-5-2016
مدرس بالقسم شوقي حامد عرفه

Benha University	Time: 3-hours
Benha Faculty of Engineering	Second Year 25-5-2016
Control Engineering (E1236)	Elect.Eng.Dept.تفات

Solve as much as you can questions in two pages

Q1
(20marks)
a-Write a mathematical model represents the physical systems shown in Fig.1, and Fig.2?
b- Draw a block diagram represents the system shown in Fig. 2 and using block reduction method to find $\mathrm{Y}(\mathrm{S}) / \mathrm{U}(\mathrm{S})$?
c -Write the most important features of a good control system?
d-Write the most important advantages and disadvantages of the open loop and the closed loop control systems?

Fig. 1

Fig. 2

Fig. 3

Consider a system shown in Fig. $3 \mathrm{H}(\mathrm{s})=1, \quad G(s)=\frac{\mathrm{K}}{\mathrm{S}(\mathrm{S}+4)}$
a-Find the steady state static error coefficients?
b- Find the gain \mathbf{K} such that the steady state error $=0.02$?
c- Find and draw the unit step response as $\mathrm{K}=16$?
d- Find the frequency response and $\mathbf{M}_{\mathbf{r}}$ and $\omega_{\mathbf{r}}$ as $\mathrm{K}=16$ and $\mathrm{r}(\mathrm{t})=2 \sin \omega t$?

Consider a control system shown in Fig. 3 if
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{(\mathrm{S}+1+\mathrm{j})(\mathrm{S}+2)(\mathrm{S}+1-\mathrm{j})}=\frac{\mathrm{k}}{\mathrm{S}^{3}+4 \mathrm{~S}^{2}+6 \mathrm{~S}+4}$
a- Sketch the complete root locus for positive values of \mathbf{K} ?
b- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 5}$ and find the closed loop poles using the plot?
c- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 5}$ and find the closed loop poles analytically?
d - Write short MATLAB program to solve $\mathrm{a} \& \mathrm{~b}$?
Q4
(30 marks)
a- Define: gain margin- phase margin?
b- Define: $\omega_{\mathrm{n}}, \omega_{\mathrm{d}}, \omega_{\mathrm{r}}, \omega_{\mathrm{c}}, \omega_{\mathrm{g}}, \omega_{\mathrm{p}}, \mathrm{M}_{\mathrm{r}}, \boldsymbol{\eta}$?
c- Consider a control system shown in Fig. 3 if

$$
G(s) H(s)=\frac{10}{(S+1+j)(S+2)(S+1-j)}=\frac{10}{S^{3}+4 S^{2}+6 S+4}
$$

a- Prove that the gain margin $=\mathbf{6 . 0 2} \mathbf{~ d b}$ at $\mathbf{2 . 4 5} \mathbf{r a d} / \mathbf{s e c}$. and the phase margin= $\mathbf{3 0 . 3}$ degrees at $1.78 \mathrm{rad} / \mathrm{sec}$.?
b- Sketch the polar plot?
c- Sketch the Bode plot?
d- Show the gain margin and the phase margin on the plots?
e- Write short MATLAB program to solve a, b and C ?

Answer

Q1

a-Write a mathematical model represents the physical systems shown in Fig.1, and Fig.2?
Fig. 1

$$
\sum_{1}^{n} V_{\text {loop }}=0 \text { then } e_{i}=R \frac{d q}{d t}+L \frac{d^{2} q}{d t^{2}}+\frac{q}{C}, i=\frac{d q}{d t}, \quad e_{o}=\frac{\int i d t}{C}=\frac{q}{c}
$$

Fig. 2

$$
m a=\sum F=m \ddot{y}=U-b \dot{y}-\dot{y} y
$$

b- Draw block diagram represents the system shown in Fig. 2 and using block reduction method to find $\mathrm{Y}(\mathrm{S}) / \mathrm{U}(\mathrm{S})$?

Closed loop $\mathrm{tf}=\frac{C(S)}{R(S)}=\frac{\mathrm{G}(\mathrm{s})}{1+G(S) H(S)}=\frac{1}{\mathrm{mS}^{2}+\mathrm{Sb}+\mathrm{K}}$
c -Write the most important features of a good control system?
Most important features of a good control system: are
1-simple construction and operation \quad 2-fast response (speed) 3-less cost
4-very large accuracy (less error)
5-stable
d-Write the most important advantages and disadvantages of the open loop and the closed loop control systems?

Open loop control system

Advantages of open loop	disadvantages of open loop
1-simple construction	1-disturbances cause errors
2- ease of maintenance	2-changes in calibration cause errors
3-less expensive	3-recalibration is necessary
4-no stability problem	
5-convenient when output is hard to measured or economically not feasible	

Closed loop control system

Disadvantages of closed loop	advantages of closed loop
1-complex construction	1-disturbances do not cause errors
2- stability may be a problem	2- has less errors
3-more expensive	3-recalibration is not necessary
	4-the ability to adjust the response

Q2

(20 marks)
Consider a system shown in Fig. 3 as $H(s)=1, \quad G(s)=\frac{K}{S(S+4)}$
a- Find the steady state static error coefficients?
It must convert non-unity feedback to unity feedback as
$K_{p}=\lim _{0} G(S)=\lim _{0} \frac{K}{S(S+4)}=\frac{K}{(0)(0+4)}=\infty$
$K_{V}=\lim _{0} S G(S)=\lim _{0} \frac{K}{(S+4)}=\frac{K}{(0+4)}=0.25 K$
$K_{a}=\lim _{0} S^{2} G(S)=\lim _{0} \frac{S K}{(S+4)}=0$
b-Find the gain \mathbf{K} such that the steady state error $=0.02$?
$\mathrm{e}_{\mathrm{ss}}(\mathrm{t})=\frac{1}{\mathrm{~K}_{\mathrm{V}}}=\frac{1}{0.25 K}=0.02, K=200$ Routh test as $\mathrm{K}=200$, system is stable
c-Find and draw the unit step response as $\mathrm{K}=16$?

$$
\frac{C(S)}{R(S)}=\frac{G(s)}{1+G(S) H(S)}=\frac{\omega_{n}{ }^{2}}{S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}}=\frac{16}{S^{2}+4 S+16}, \omega_{n}=4 \mathrm{rad} / \mathrm{sec} ., \quad \eta=0.5
$$

The step response is under damped Step response of a second order system $R(S)=1 / \mathrm{s}$
$\mathrm{C}(\mathrm{S})=$ closed loop T.F $(\mathrm{S}) * \mathrm{R}(\mathrm{S})=\frac{\omega_{n}{ }^{2} R(S)}{S\left(S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}\right)}=\frac{16}{S\left(S^{2}+4 S+16\right)}$
$=\frac{a}{S}+\frac{b s+d}{\left(S^{2}+4 S+16\right)}$ partial fraction ,
$\mathrm{C}(\mathrm{t})=$ inverse Laplace of the product of closed loop $\mathrm{t} . \mathrm{f}$. S$)$ and $\mathrm{R}(\mathrm{S})=1 / \mathrm{s}$ with zero initial conditions $\mathrm{C}(\mathrm{t})=\mathrm{L}^{-1}\left[(\mathrm{C}(\mathrm{S})]=\mathrm{L}^{-1}[\right.$ closed loop $\mathrm{t} . \mathrm{f} .(\mathrm{S}) * \mathrm{R}(\mathrm{S})]$ with zero initial conditions]
$\eta=0.5, \omega_{n}=4 \mathrm{rad} / \mathrm{sec} . \omega_{d}=\omega_{n} \sqrt{1-\eta^{2}}=3.5 \mathrm{rad} / \mathrm{sec}, \cos ^{-1} 0.5=p i / 3$

$$
\begin{aligned}
& C(t)=1-\frac{e^{-\eta \omega_{n} t}}{\sqrt{1-\eta^{2}}} \sin \left(\omega_{d} t+\cos ^{-1} \eta\right)=1-1.155 e^{-2 t} \sin (1.732 t+p i / 3) \\
& M_{p=} e^{\frac{-\eta \pi}{\sqrt{1-\eta^{2}}}}=0.163, t_{r}=\frac{\pi-\cos ^{-1} \eta}{\omega_{d}}=\frac{\pi-\frac{p i}{3}}{3.5}=0.6 \mathrm{sec} \\
& t_{p}=\frac{\pi}{\omega_{d}}=0.9 \text { sec. }, t_{s}=4 T=\frac{4}{\eta \omega_{n}}=2 \mathrm{sec}
\end{aligned}
$$

Step Response

Find the frequency response and $\mathbf{M}_{\mathbf{r}}$ and $\omega_{\mathbf{r}}$ as $\mathrm{K}=4$ and $\mathrm{r}(\mathrm{t})=5 \sin \omega t$?
d-Find the frequency response and $\mathbf{M}_{\mathbf{r}}$ and ω_{r} as $\mathrm{K}=16$ and $\mathrm{r}(\mathrm{t})=2 \sin \omega t$?

$$
\begin{gathered}
\frac{C(S)}{R(S)}=\frac{\mathrm{G}(\mathrm{~s})}{1+G(S) H(S)}=\frac{\omega_{n}{ }^{2}}{S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}}=\frac{16}{S^{2}+4 S+16} \\
\omega_{\mathrm{n}}=4 \mathrm{rad} / \mathrm{sec} ., \quad \eta=0.5, M_{r}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}=\frac{1}{2(0.5) \sqrt{1-(0.5)^{2}}}=1.155
\end{gathered}
$$

$$
\omega_{\mathrm{r}}=\omega_{\mathrm{n}} \sqrt{1-2 \zeta^{2}}=4 \sqrt{1-2(0.5)^{2}}=2.818 \mathrm{rad} / \mathrm{sec}
$$

the frequency response as $r(t)=2 \sin \omega t$. Steps to find frequency Response:
1- the closed loop transfer function $=\mathbf{T}(\mathbf{s})=\mathbf{C}(\mathbf{S}) / \mathbf{R}(\mathbf{S})=$

$$
\frac{C(S)}{R(S)}=\frac{\mathrm{G}(\mathrm{~s})}{1+G(S) H(S)}=\frac{\omega_{n}{ }^{2}}{S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}}=\frac{16}{S^{2}+4 S+16}
$$

2-the closed loop frequency transfer function =

$$
\begin{gathered}
\mathbf{T}(\mathbf{j} \omega)=\mathbf{C}(\mathbf{j} \omega) / \mathbf{R}(\mathbf{j} \omega)=\frac{16}{(\mathrm{j} \omega)^{2}+4(\mathrm{j} \omega)+16}=\mathrm{M}\llcorner\Phi=\mathrm{Re}+\mathrm{j} \text { imag } \\
\boldsymbol{M}=\frac{\mathbf{1 6}}{\sqrt{\left(\mathbf{1 6 - \boldsymbol { \omega } ^ { 2 }) ^ { 2 } + \mathbf { 1 6 } \boldsymbol { \omega } ^ { 2 }}\right.} \quad, \boldsymbol{\Phi}=\boldsymbol{\operatorname { t a n }}^{-\mathbf{1}}\left[\mathbf{4} \boldsymbol{\omega} /\left(\mathbf{1 6}-\boldsymbol{\omega}^{\mathbf{2}}\right)\right]}
\end{gathered}
$$

3-As the input $=r(t)=3 \sin \omega t$ then

$$
\text { the response }=C(t)=2 M \sin (\omega t+\Phi)
$$

$$
=\frac{32}{\sqrt{\left(16-\omega^{2}\right)^{2}+16 \omega^{2}}} \sin \left[\omega t+\tan ^{-1}\left[4 \omega /\left(16-\omega^{2}\right)\right]\right.
$$

Q3
(15 marks)
Consider a control system shown in Fig. 3 if
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{(\mathrm{S}+1+\mathrm{j})(\mathrm{S}+2)(\mathrm{S}+1-\mathrm{j})}=\frac{\mathrm{k}}{\mathrm{S}^{3}+4 \mathrm{~S}^{2}+6 \mathrm{~S}+4}$
a- Sketch the complete root locus for positive values of \mathbf{K} ?
b- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 5}$ and find the closed loop poles using the plot?
c- Find \mathbf{K} that makes the complex closed loop poles have a damping ratio $=\mathbf{0 . 5}$ and find the closed loop poles analytically?
d- Write short MATLAB program to solve $\mathrm{a} \& \mathrm{~b}$?
a-Root locus:
1-the root locus is symmetrical about the real axis in the S-plane
2-the open loop $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{(\mathrm{S}+1-\mathrm{j})(\mathrm{S}+2)(\mathrm{S}+1+\mathrm{j})}=\frac{\mathrm{k}}{\mathrm{s}^{3}+4 \mathrm{~S}^{2}+6 \mathrm{~S}+4}$
3-the root locus starts at the pole and ends at the zeros or infinity
4-number of root loci= $n=$ number of poles of the open loop $\mathrm{TF}=3$ at $[-1+j,-1-j,-2]$

5-number of zeros $=\mathrm{m}=0$
6 -number of asymptotes $=n-m=3-0=3$
8-center of gravity $=A=\frac{\sum \text { poles }-\sum \text { zoles }}{n-m}=\frac{-1-1-2}{3}=-1.3$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are $=\theta=\frac{ \pm 180(2 R+1)}{n-m}= \pm 60, \pm 180$
10- Points of crossing the imaginary axis as Routh test
Charct.equa $=1+G(S) H(S)=0=S^{3}+4 S^{2}+6 s+4+K$

S^{3}	1	6	$\begin{aligned} & 4+K \geq 0,[20-K] / 4 \geq 0 \text { then }-4 \leq K \leq 20, \mathrm{Kc}=20 \\ & 4 S^{2}+24=0, S= \pm j \omega= \pm \sqrt{6} \mathrm{rad} / \mathrm{sec} \end{aligned}$
S^{2}	4	4+K	
S	[24-4-K]/ 4		
S^{0}	4+K		

11- there is no break points (break away or break in) at

$$
-\frac{d K}{d S}=0=\frac{d}{d S}\left[\frac{1}{G(S) H(S)}\right]=\frac{d}{d S}\left[S^{3}+4 S^{2}+6 s+4\right]=3 S^{2}+8 s+6=0
$$

12- There is no break angles $[\pm 180(2 R+1) / r]$ where $r=$ number of branches(poles for break away or zeros for break in) $\mathrm{R}=0,1,----$ no break angles

13-the angle of departures $($ complex poles $)=$
Angle of departure from a complex pole - 180°

- (sum of the angles of vectors to a complex pole in question from other poles)
+ (sum of the angles of vectors to a complex pole in question from zeros)
angle of departure $= \pm 180-90-45= \pm 45 \mathrm{deg}$
14-angle of arrival (complex zeros) as
Angle of arrival at a complex zero $=180^{\circ}$
- (sum of the angles of vectors to a complex zero in question from other zeros)
+ (sum of the angles of vectors to a complex zero in question from poles)

15 -sketch the root loci as

16 - the damping factor or coefficient ζ is straight line with slope $\Theta=\cos ^{-1} \zeta$
with respect to the negative real axis in the S-plane. $\Theta=\cos ^{-1} 0.5=60 \mathrm{deg}$. at the test point (intersection point) $\mathrm{S}_{\mathrm{d}}=-0.8 \pm \mathrm{j} 1.3$

$$
\begin{gathered}
\text { angle condition }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3}\left[\theta_{\text {zeros }}-\theta_{\text {poles }}\right]= \pm 180(2 \mathrm{R}+1)=90+54+36=180 \mathrm{deg} \\
\text { magnitude condition }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \frac{\| \text { poles } \|}{\| \text { zeros } \|}=K=* *=1.5 \\
\qquad \begin{array}{r}
\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { open loop poles }=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { closed loop poles }=\text { constant as } \mathrm{n}-\mathrm{m} \geq 2
\end{array} \\
\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { open loop poles }=-1-2-1=-4=\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { closed loop poles } \\
\text { then } \mathrm{p}=-2.4 \text { i. e. closed loop poles are }[-0.8 \pm \mathrm{j} 1.3,-2.4]
\end{gathered}
$$

19- To find analytically closed loop poles and K as

$\left(S^{2}+2 \zeta \omega_{n} S+\omega_{n}{ }^{2}\right)(S+a)=c h a r a c t e r i s t i c ~ e q u a . ~ f o r ~ a ~ t h i r d ~ o r d e r ~ s y s t . ~$
Solve $\quad 1+G(S) H(S)=0=S^{3}+4 S^{2}+6 s+4+K=\left(S^{2}+\omega_{n} S+\omega_{n}{ }^{2}\right)(S+a)$

$$
\begin{gathered}
=S^{3}+\left(\omega_{n}+a\right) S^{2}+\left(\omega_{n} a+\omega_{n}^{2}\right) S+\omega_{n}^{2} a \\
\omega_{n}+a=4, \omega_{n} a+\omega_{n}^{2}=6, \omega_{n}^{2} a=k+4, \text { then } \omega_{n}=1.5 \mathrm{rad} / \text { se., } a=2.5, k=1.74
\end{gathered}
$$

Prog. >>n=[1];d=[11 464 4]; rlocus(n,d), grid

Q4

a- Define: gain margin- phase margin?
-Gain margin $\mathbf{G}_{\mathbf{m}}$: it is reciprocal of the magnitude of the output frequency response at the Phase crossover frequency ω_{p}
$\mathbf{G}_{\mathbf{m}}=1 /\left[\operatorname{Real}\right.$ of $\left.\mathrm{G}\left(\mathrm{j} \boldsymbol{\omega}_{\mathbf{p}}\right) \mathrm{H}\left(\mathrm{j} \boldsymbol{\omega}_{\mathbf{p}}\right)\right]=1 /|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{p}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{p})|=\mathrm{K}_{\mathrm{d}} / \mathrm{K}$
$\mathrm{G}_{\mathrm{M}}=20 \log \mathrm{G}_{\mathrm{m}} \mathrm{db}$
-Phase margin γ_{m} : it is the angle of the output frequency response at the gain crossover frequency plus 180 degrees.

$$
\gamma_{m}=\angle \mathrm{G}\left(\mathrm{j} \omega_{g}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right)+180 \mathrm{deg} .
$$

b- Define: $\omega_{\mathrm{n}}, \omega_{\mathrm{d}}, \omega_{\mathrm{r}}, \omega_{\mathrm{c}}, \omega_{\mathrm{g}}, \omega_{\mathrm{p}}, \mathbf{M}_{\mathrm{r}}, \boldsymbol{\eta}$?
-Natural frequency $\omega_{\mathbf{n}} \mathrm{rad} / \mathrm{sec}$: it is the natural frequency depends on the natural of the system parameters.

- Under damped natural frequency $\omega_{\mathbf{d}} \mathrm{rad} / \mathrm{sec}$: it is the under damped natural frequency depends on the damping coefficient $\boldsymbol{\eta}$ as it is less than one $\boldsymbol{\eta}<1$.
-Resonant frequency $\omega_{\mathrm{r}} \mathrm{rad} / \mathrm{sec}$: it is the frequency at which the peak value of the output frequency response for a second order is equal to $\boldsymbol{\omega}_{r}=\boldsymbol{\omega}_{n} \sqrt{\mathbf{1 - 2 \zeta ^ { 2 }}}$

$$
\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}, \quad \text { for } 0 \leq \zeta \leq 0.707
$$

As ζ approaches zero, M_{r} approaches infinity $0<\zeta \leqslant 0.707$, the resonant frequency ω_{r} is less than the damped natural frequency
-Corner frequency $\omega_{\mathrm{c}} \mathrm{rad} / \mathrm{sec}$: it is the frequency at which the magnitude of the output frequency response is changed sharply. It may be $\left(0,1,1 / T, \omega_{\mathbf{n}}\right)$
-Gain crossover frequency ω_{g} : it is the frequency at which the magnitude of the output frequency response is equal to one or zero decibel.
$|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{g}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{g})|=1 \quad$ or $|\mathrm{G}(\mathrm{j} \boldsymbol{\omega} \mathbf{g}) \mathrm{H}(\mathrm{j} \boldsymbol{\omega} \mathbf{g})|=0 d b$
-Phase crossover frequency ω_{p} : it is the frequency at which the phase of the output frequency response is equal to (-180) degrees.

Imag. $\left[G\left(j \omega_{p}\right) H\left(j \omega_{p}\right)\right]=0 \quad$ or $\quad \angle G(j \omega \mathbf{p}) H(j \omega \mathbf{p})=-180 d e g$.
-Maximum resonant magnitude $\mathbf{M}_{\mathbf{r}}$: it is the peak value of the output frequency response for a second order system $\boldsymbol{M}_{\boldsymbol{r}}=\frac{\mathbf{1}}{2 \zeta \sqrt{1-\zeta^{2}}}$

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad M_{r}=|G(j \omega)|_{\max }=\left|G\left(j \omega_{r}\right)\right|=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}
$$

-damping coefficient $\boldsymbol{\eta}$ it depends on the natural of the system parameters. For second order system

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Values of $\boldsymbol{\eta}$	System stability	Step-response
$0>\eta$	System is unstable	undefined
$\eta=0$	System is critically stable	oscillatory
$0<\eta<1$	System is stable	Under-damped
$0<\eta=1$	System is stable	Critically damped
$0<\eta>1$	System is stable	Over damped

c-Consider a control system shown in Fig. 1 if

$$
G(s) H(s)=\frac{10}{(S+1+j)(S+2)(S+1-j)}=\frac{10}{S^{3}+4 S^{2}+6 S+4}
$$

a- Prove that the gain margin=6.02 db at $2.45 \mathrm{rad} / \mathbf{s e c}$. and the phase margin= $\mathbf{3 0 . 3}$ degrees at $1.78 \mathrm{rad} / \mathrm{sec}$.?
b- Sketch the polar plot?
c- Sketch the Bode plot?
d- Show the gain margin and the phase margin on the plots?
e- Write short MATLAB program to solve a, b and C ?
1- the open loop $\mathrm{TF}=\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathbf{G}(\mathbf{S}) \mathbf{H}(\mathbf{S})$

$$
G(s) H(s)=\frac{10}{(S+1+j)(S+2)(S+1-j)}=\frac{10}{S^{3}+4 S^{2}+6 S+4}
$$

2- Find the freq.open loop $\mathrm{TF}=$

$$
\mathbf{G}(\mathbf{j} \omega) \mathbf{H}(\mathbf{j} \boldsymbol{\omega})=\frac{10}{\mathrm{~S}^{3}+4 \mathrm{~S}^{2}+6 \mathrm{~S}+4}=\mathrm{Me}^{\mathrm{j} \Phi}=M\llcorner\Phi=\mathrm{Re}+\mathrm{j} \mathrm{imag}
$$

$$
\begin{gathered}
M=\frac{10}{\sqrt{\left(4-4 \omega^{2}\right)^{2}+\left(6 \omega-\omega^{3}\right)^{2}}} \quad, \Phi=-\tan ^{-1}\left(\left(6 \omega-\omega^{3}\right) /\left(4-4 \omega^{2}\right)\right) \\
M=\frac{10}{\sqrt{\left(4-4 \omega^{2}\right)^{2}+\left(6 \omega-\omega^{3}\right)^{2}}}=\frac{10}{\sqrt{\left(4-4 \omega^{2}\right)^{2}+\left(6 \omega-\omega^{3}\right)^{2}}}=1
\end{gathered}
$$

$M=\frac{10}{\sqrt{\left(4-4(1.78)^{2}\right)^{2}+\left(6(1.78)-(1.78)^{3}\right)^{2}}}=1$, then $\omega_{g}=1.78 \mathrm{rad} / \mathrm{sec}$.
$\Phi=-\tan ^{-1}\left(\left(6 \omega-\omega^{3}\right) /\left(4-4 \omega^{2}\right)\right)=-\tan ^{-1}\left(\left(6 * 2.45-2.45^{3}\right) /\left(4-4 * 2.45^{2}\right)\right)=\quad-$ 180 deg .
then $\omega_{p}=2.45 \mathrm{rad} / \mathrm{sec}$.
$M=\frac{10}{\sqrt{\left(4-4(2.45)^{2}\right)^{2}+\left(6(2.45)-(2.45)^{3}\right)^{2}}}=0.5$, then $G_{M}=20 \log \frac{1}{0.5}=6.02 \mathrm{db}$
$\Phi=-\tan ^{-1}\left(\left(6 \omega-\omega^{3}\right) /\left(4-4 \omega^{2}\right)\right)=-\tan ^{-1}\left(\left(6 * 1.78-1.78^{3}\right) /\left(4-4 * 1.78^{2}\right)\right)=$ -149.7 deg .
$\gamma_{m}=\angle \mathrm{G}\left(\mathrm{j} \omega_{g}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right)+180$ deg. $=180-149.7=30.3$ deg.

3- Find the table

$\boldsymbol{\omega}$	0	0.1	1	1.78	2.45	5	10	∞
Φ	0			-150	-180	-		-270
M	2.5		2	1	0.5			0
20logM	8		$6.02-$	0	6.02	-	-	0
Real G(j $\boldsymbol{j} \mathbf{) H}(\mathbf{j} \boldsymbol{\omega})$	2.5		0		-0.5			0
Imag G(j $\mathbf{j} \mathbf{)} \mathbf{H}(\mathbf{j} \omega)$	0		-2		0			0

4- Plot the vector on the $\mathbf{j} \boldsymbol{\omega}$ - plane where Φ in degrees as a straight line and determine M on this line
5- Plot the locus of the vector as points from the table
6- Find the gain and the phase margins from the plot

Prog. $\gg \mathrm{n}=[10] ; \mathrm{d}=\left[\begin{array}{lll}1 & 4 & 6\end{array}\right.$ 4];
>> nyquist(n,d) >> margin(n,d) >> nichols(n,d)

Bode Diagram
$\mathrm{Gm}=6.02 \mathrm{~dB}$ (at $2.45 \mathrm{rad} / \mathrm{s}$), $\mathrm{Pm}=30.3 \mathrm{deg}$ (at $1.78 \mathrm{rad} / \mathrm{s}$)

