

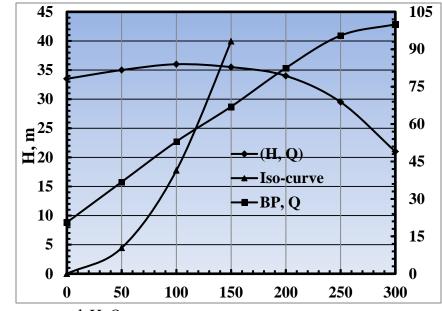
Time: Three Hours	(attempt all questions)	(assume any missing data)						
Q1 (20 points)								
1-1) Explain the pump cavitation, what are the signs of pump Cavitations and discuss								
its influence upon runner	-dynamic machines?							
Solution								
Pump cavitation is the format	tion and subsequent collapse or in	nplosion of vapor bubbles in a pump.						
-	are formed in the pump due to dr	op in absolute pressure of the liquid						
below vapor pressure.								
1. Noise	2. Vibration	3. Fluctuating gauges						
1. Pitting damage to the impe								
2. Sharp drop in pump head a								
3. Sudden drop for the efficie	ncy							
1-2) The characteristics	of a single stage single sucti	ion centrifugal pump running at						

a speed of 950 rpm are as follows:

Q (lit/sec)	0	50	100	150	200	250	300
H (m of water)	33.5	35	36	35.5	34	29.5	21
BP (kW)	20.6	36.8	53	67	82.5	95.5	100

On a certain occasion the pump is required to deliver 130 lit/sec against a total head of the pump of 30 m.

Determine:


- i) The new speed of the pump.
- ii) The corresponding power input.
- iii) The specific speed of this pump.
- iv) Calculate the head coefficient C_H , discharge coefficient C_Q , power coefficient

 C_p if the pump diameters 30cm.

Solution

i) By Iso-efficiency curve

$$H \alpha Q^2$$
, $\therefore H = kQ^2$, $k = \frac{H}{Q^2} = \frac{30}{130^2} = 0.001775 \frac{m \cdot s^2}{lit^2}$

From iso-curve and *H*-*Q* curve.

 $\begin{array}{lll} Q_{P1} = 140 \ L/s & H_{P1} = 36 \ m & BP_1 = 68 \ kW & N_{P1} = 950 \ rpm \\ Q_{P2} = 130 \ L/s & H_{P2} = 30 \ m & BP_2 = ?? \ kW & N_{P1} = ?? \ rpm \end{array}$

$$C_{Q1} = C_{Q2}$$

$$\frac{Q_{p1}}{N_{p1} * D_{p1}^{3}} = \frac{Q_{p2}}{N_{p2} * D_{p2}^{3}} \quad \therefore \frac{Q_{p1}}{N_{p1}} = \frac{Q_{p2}}{N_{p2}}$$

$$N_{p2} = \frac{Q_{p2}}{Q_{p1}} * N_{p1} = \frac{130}{140} * 950 = \frac{882 \ rpm}{R_{p2}}$$

$$C_{p1} = C_{p2}$$

$$\frac{BP_{p1}}{N_{p1}^{3} * \rho * D_{p1}^{5}} = \frac{BP_{p2}}{N_{p2}^{3} * \rho * D_{p2}^{5}} \quad \therefore \frac{BP_{p1}}{N_{p1}^{3}} = \frac{BP_{p2}}{N_{p2}^{3}}$$

$$BP_{p2} = \frac{BP_{p1}}{N_{p1}^{3}} * N_{p2}^{3} = \left(\frac{N_{p2}}{N_{p1}}\right)^{3} * BP_{p1} = \left(\frac{882}{950}\right)^{3} * 68 = \frac{54.4 \ kW}{R_{s}}$$

$$N_{s} = \frac{N \sqrt{Q}}{(H)^{3/4}} = \frac{882\sqrt{0.13}}{(30)^{3/4}} = \frac{24.8}{C_{Q1}}$$

$$C_{Q1} = \frac{Q_{p1}}{N_{p1} * D_{p1}^{3}} = \frac{0.14}{(\frac{950}{60}) * (0.3)^{3}} = 0.327$$

$$C_{H1} = \frac{gH_{p1}}{N_{p1}^{2} * D_{p1}^{2}} = \frac{9.81 * 36}{\left(\frac{950}{60}\right)^{2} * (0.3)^{2}} = \frac{15.65}{15.65}$$
$$C_{p1} = \frac{BP_{p1}}{N_{p1}^{3} * \rho * D_{p1}^{5}} = \frac{68 * 1000}{1000 * \left(\frac{950}{60}\right)^{3} * (0.3)^{5}} = \frac{0.62}{1000}$$

Q2 (20 points)

2-1) Explain with sketch different types of compressors?

Solution

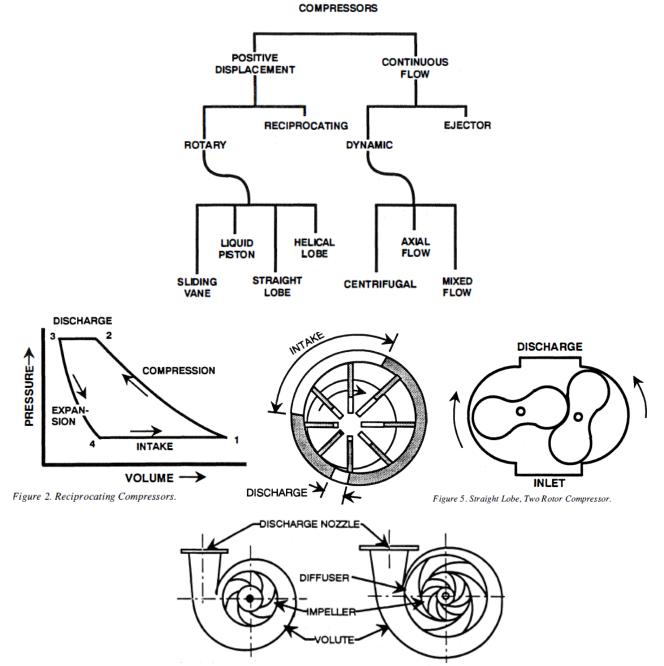


Figure 7. Centrifugal Compressors.

2-2) The velocity of steam at inlet to a simple impulse turbine is 1000 m/s, and the nozzle angle is 20°. The blade speed is 400 m/s and the blades are symmetrical. *Determine* the blade angles if the steam is to enter the blades without shock. If the friction effects on the blade are negligible, calculate:

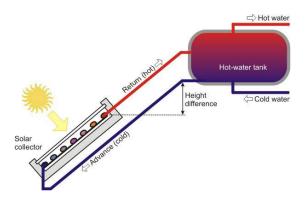
- i) Input power and the diagram power for a mass flow of 0.75 kg/s.
- ii) The axial thrust and the diagram efficiency.
- iii) Speed ratio and the speed of rotation if the mean diameter of the wheel is 500 mm.
- iv) The output power at maximum diagram efficiency and the maximum diagram efficiency if the absolute velocity remains constant.

Solution

- ✓ For symmetrical blades then $\beta_i = \beta_e$
- ✓ For friction effects on the blade are negligible then $Cr_i = Cr_e$

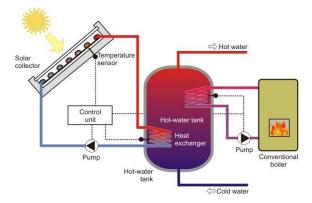
i) Applying the cosine rule to triangle OAB

 $C_{ri}^{2} = C_{ai}^{2} + C_{b}^{2} - 2 C_{ai} C_{b} \cos \alpha i$ C_b D $C_{ri}^{2} = 1000^{2} + 400^{2} - (2*1000*400*\cos 20)$ $C_{ri}^{2} = 40.8 * 10^{4}$ C_{fi} $C_{ri} = 639 \text{ m/s} = Cr_e$ and by using sine rule in OAB $\frac{C_{ai}}{\sin OAB} = \frac{C_{ri}}{\sin \alpha i}$ $\Delta C_w = C_{wi} + C_{we}$ Also sin OAB = sin $(180 - \beta i) = \sin \beta i$ В $\therefore \frac{C_{ai}}{\sin\beta i} = \frac{C_{ri}}{\sin\alpha i}$ $\therefore \sin \beta i = \left(\frac{C_{ai}}{C_{ri}}\right) \sin \alpha i = \frac{1000 * \sin 20}{639} = 0.535$ <u> Ві = 32.3 = Ве</u> AD = $C_{ri} \cos \beta i = 639 \cos 32.3 = 540$ m/s $AE = C_{re} \cos \beta e = 639 \cos 32.3 = 540 \text{ m/s}$ $\Delta Cw = 540 + 540 = 1080 \text{ m/s}$ Input Power = $\dot{m} \frac{C_{ai}^2}{2} = 0.75 * \frac{1000^2}{2} = \frac{375 \text{ kw}}{2}$ *diagram Power* = $\dot{m} C_b \Delta C_w = 0.75 * 400 * 1080 = 324 kw$ diagram Efficiency = $\frac{\text{diagram Power}}{\text{Input Power}} = \frac{324}{375} = \frac{86.4\%}{375}$ $C_{fi} = C_{ri} \sin\beta i = 639 \sin 32.3 = 341.4 \text{ m/s}$


 $C_{fe} = C_{re} \sin\beta_{e} = 639 \sin 32.3 = 341.4 \text{ m/s}$ $\Delta Cf = C_{fi} - C_{fe} = 0$ Axial thurst = 0 Speed ratio = C_b / C_{ai} = 400/1000 = 0.4 $C_{b} = (\pi DN/60)$ speed of rotation = N = 60*400/ (π *0.5) = 15278.8 rpm max. max. diagram Power = $\dot{m} \left(\frac{\cos\alpha i}{2}\right) C_{ai} \Delta C_{w} = 0.75 * \frac{0.9}{2} * 1080 * 1000$ = 380kw max. diagram effici. = $\cos\alpha i = \cos 20 = 94\%$

Q3 (20 points)

3-1) Explain briefly with the aid of sketch the different types of solar water collectors?


Solution

Thermosyphon systems

The principle of the thermosyphon system is that cold water has a higher specific density than warm water, and so being heavier will sink down.

Forced-circulation systems

In contrast to thermosyphon systems, an electrical pump can be used to move water through the solar cycle of a system by forced circulation. Collector and storage tank can then be installed independently, and no height difference between tank and collector is necessary.

3-2) A 2-shell passes and 4-tube passes heat exchanger is used to heat glycerin from 20°C to 50°C by hot water, which enters the thin-walled 2-cm-diameter tubes at 80°C and leaves at 40°C. The total length of the tubes in the heat exchanger is 60 m. The convection heat transfer coefficient is 25 W/m² · °C on the glycerin (shell) side and 160 W/m² · °C on the water (tube) side. Draw the heat exchanger and determine the

rate of heat transfer in the heat exchanger (a) before any fouling occurs and (b) after fouling with a fouling factor of 0.0006 m² \cdot °C/W occurs on the outer surfaces of the tubes. Note take Correction factor F=0.9.

Solution

 $A_s = \pi DL = \pi (0.02 \text{ m})(60 \text{ m}) = 3.77 \text{ m}^2$

 $\dot{Q} = UA_s F \Delta T_{\text{lm, }CF}$

where F is the correction factor and $\Delta T_{Im, CF}$ is the log mean temperature difference for the counter-flow arrangement. These two quantities are determined from

$$\Delta T_1 = T_{h, \text{ in}} - T_{c, \text{ out}} = (80 - 50)^{\circ}\text{C} = 30^{\circ}\text{C}$$

$$\Delta T_2 = T_{h, \text{ out}} - T_{c, \text{ in}} = (40 - 20)^{\circ}\text{C} = 20^{\circ}\text{C}$$

$$\Delta T_{\text{lm, CF}} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1/\Delta T_2)} = \frac{30 - 20}{\ln (30/20)} = 24.7^{\circ}\text{C}$$

(a) In the case of no fouling, the overall heat transfer coefficient U is determined from

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}} = \frac{1}{\frac{1}{160 \text{ W/m}^2 \cdot \text{°C}} + \frac{1}{25 \text{ W/m}^2 \cdot \text{°C}}} = 21.6 \text{ W/m}^2 \cdot \text{°C}$$

Then the rate of heat transfer becomes

$$\dot{Q} = UA_s F \Delta T_{\text{lm, }CF} = (21.6 \text{ W/m}^2 \cdot ^\circ\text{C})(3.77\text{m}^2)(0.91)(24.7^\circ\text{C}) = 1830 \text{ W}$$

(b) When there is fouling on one of the surfaces, the overall heat transfer coefficient U is

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o} + R_f} = \frac{1}{\frac{1}{160 \text{ W/m}^2 \cdot ^\circ \text{C}} + \frac{1}{25 \text{ W/m}^2 \cdot ^\circ \text{C}} + 0.0006 \text{ m}^2 \cdot ^\circ \text{C/W}}$$

= 21.3 W/m² · °C

The rate of heat transfer in this case becomes

$$\dot{Q} = UA_s F \Delta T_{\text{Im, }CF} = (21.3 \text{ W/m}^2 \cdot ^\circ\text{C})(3.77 \text{ m}^2)(0.91)(24.7^\circ\text{C}) = 1805 \text{ W}$$

With best wishes Dr. Mohamed Ramadan