

Benha University
College of Engineering at Benha
Mechanical Eng. Dept.

$4^{\text {th }}$ Year Mechanics
 Date: 28/5/2016

Subject :Automatic Control M482
Questions For Final Examination
Examiner : Dr. Mohamed Elsharnoby
Time : 180 min.
Attempt all questions, Number of questions =4, Number of pages =2
1-a) For the block diagram shown in Figure 1, draw the equivalent signal flow graph using 5 nodes: input, output, and nodes a, b, and c.

Use masson rule to find the transfer function of the system.

Figure 1
1-b) Consider the system below in figure 2 and let $\mathbf{p}=\mathbf{0}$.
i) Determine conditions on K and z so that the system is stable.
ii) Determine all possible conditions on K and z so that the system will be marginally stable

Figure 2
2- a) Consider the block diagram in figure 3.
(a) With $G_{c}(s)=1, \mathrm{r}(\mathrm{t})=0$, and $\mathrm{d}(\mathrm{t})=$ unit step, find the range of gain K such that the steady state output due to the disturbance $\mathrm{d}(\mathrm{t})$ is $0.05 \mathrm{~d}(\mathrm{t})$.
(b) Let $\mathrm{d}(\mathrm{t})=0$. With $K G_{c}(s)=\mathbf{1 8}$, find the steady state step error. Also find the steady state ramp error.
(c) What effect would $G_{c}(s)=\frac{1}{s}$ have on the steady state errors? Note: check the root locus first.

Figure 3
For the system given, find the jw-axis crossing point and the corresponding value of K .
b) User the Routh-Hurwitz criteria to determine the number of roots in the left half complex plane, the right half plane, and on the jw-axis for each of the following polynomials .

$$
\begin{array}{ll}
\text { i- } & d(s)=s^{5}+s^{4}+2 s^{3}+2 s^{2}+s+1 \\
\text { ii- } & d(s)=s^{4}+9 s^{3}+45 s^{2}+87 s+50 \\
\text { iii- } & d(s)=s^{6}+5 s^{5}+14 s^{4}+40 s^{3}+64 s^{2}+80 s+96
\end{array}
$$

3-a)
Hand sketch the root locus of $1+\mathrm{KG}(\mathrm{s})=0$ as K varies from 0 to $+\infty$, where

$$
G(s)=\frac{s+2}{s(s+1)(s+3)^{2}}
$$

Make sure you provide verbal description on the following: open-loop pole/zero map; real axis decision; and asymptotes.
3-b) For the control system shown in Fig.4, find the following :
i) The damping ratio, ζ.
ii) The settling time in response to a step input.
iii) $\quad c(t), t>0$ for r is unit step and $c(0)=0$
iv) The steady state output in response to $r(t)=\cos 2 t$.

Figure 4
4-a) Given the straight line Bode diagram of magnitude in figure5, find the corresponding transfer function.

Figure 5
4-b) For the system given below in figure 6, estimate the values of K and K_{t} so that a maximum percentage overshoot of 9.6% and a settling time of 0.05 sec for a tolerance band of 1% are achieved.

Figure 6
c) Consider the standard feedback system shown below in figure 7 .

Figure 7
Let the transfer function of the plant is $G_{p}(\mathrm{~s})=\frac{1}{\mathrm{~s}(\mathrm{~s}+5)}$,
Design a PI controller whose T.F of the form $\operatorname{Gc}(\mathrm{s})=\mathrm{k}_{\mathrm{p}}+\frac{\mathrm{k}_{\mathrm{i}}}{\mathrm{s}}$ such that
such that the closed loop system is stable with one pole at $r_{1}=-4$ and the other two poles are at $r_{2,3}=-\zeta \omega_{o} \pm j \omega_{o} \sqrt{1-\zeta^{2}}$ with $\omega_{o} \geq 2, \zeta>0$, and ζ is as large as possible.
Draw the Bode plots of the system with and without controller.

Benha University

Mechanical Eng. Dept.
Subject :Automatic Control
$4^{\text {th }}$ Year Mechanics
Date 28/5/2016

Model Answer of The Final Corrective Exam

Elaborated by: Dr. Mohamed Elsharnoby

نموذج الاجابة لمادة : التحكم الآلى 482
الكاريخ السبت 28 مايو 2016
أستاذ المادة : د. محمد عبد اللطيف الشرنوبى
1-a)

Loops
$\mathrm{L}_{1}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1} \quad \mathrm{~L}_{2}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2} \quad \mathrm{~L}_{3}=-\mathrm{G}_{2} \mathrm{H}_{3}$
Paths

$$
\mathrm{M}_{2}=\mathrm{G}_{4} \mathrm{G}_{2} \mathrm{G}_{3}
$$

$\mathrm{M}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$
$\Delta=1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}+\mathrm{G}_{2} \mathrm{H}_{3}$
$\Delta_{1}=1$
$\Delta_{2}=1$
$\mathrm{TF}=\left(\mathrm{M}_{1} \Delta_{1}+\mathrm{M}_{2} \Delta_{2}\right) / \Delta=\left(\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{4} \mathrm{G}_{2} \mathrm{G}_{3}\right) /\left(1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}+\mathrm{G}_{2} \mathrm{H}_{3}\right)$

1-b)
FOR $\mathrm{P}=0$, the characteristic equation is given by:
$S^{2}\left(S^{2}+2 S+8\right)+K(S+Z)=0$
$S^{4}+2 S^{3}+8 S^{2}+K S+K Z=0$
Construct the Huwarth array

s^{4}	1	8	$k Z$
s^{3}	2	k	0
s^{2}	$(16-k) / 2$	$k Z$	0
s	$\frac{\left(16 k-k^{2}-2 k z\right)(2)}{16-k}$	0	
s^{0}	$k z$		

For stable systen
$16>K>0, Z>0$
$\frac{\left(16 k-k^{2}-2 k z\right)(2)}{16-k}$
>0
$16-\mathrm{K}-2 \mathrm{z}>0$
$16>k+2 z$
ii For marginally stable system

$$
\begin{aligned}
& \text { Put } S=j \omega \\
& \omega^{4}-2 j \Phi^{3}-8 \Phi^{2}+\mathrm{jk} \omega+\mathrm{kz}=0 \\
& -2 \omega^{3}+\mathrm{k} \omega=0 \\
& \mathrm{k}=2 \omega^{2} \\
& \omega^{4}-8 \omega^{2}+\mathrm{kz}=0 \\
& \omega^{4}+(2 z-8) \omega^{2}+=0 \\
& \omega^{4}+(2 z-8) \omega^{2}+=0 \quad \omega=0 . \quad \omega= \pm(8-2 z)^{1 / 2} \quad, K=16-4 z \\
& 4>\mathrm{z}>0,16>\mathrm{k}>0
\end{aligned}
$$

2-a)

Consider the block diagram below.
(a) With $G_{c}(s)=1, \mathrm{r}(\mathrm{t})=0$, and $\mathrm{d}(\mathrm{t})=$ unit step, find the range of gain K such that the steady state output due to the disturbance $\mathrm{d}(\mathrm{t})$ is $0.05 \mathrm{~d}(\mathrm{t})$.
(b) Let $\mathrm{d}(\mathrm{t})=0$. With $K G_{c}(s)=18$, find the steady state step error. Also find the steady state ramp error.
(c) What effect would $G_{c}(s)=\frac{1}{s}$ have on the steady state errors? Note: check the root locus first.

$$
\begin{aligned}
& \frac{C(s)}{D(s)}=\frac{1}{1+\frac{k(s+1)}{(s-1)(s-2)}}=\frac{(s-1)(s-2)}{(s-1)(s-2)+K(s+1)} \quad D(s)=\frac{1}{s} \\
& \lim _{s \rightarrow 0} s C(s)=\lim _{s \rightarrow 0} \frac{(s-1)(s-2)}{(s-1)(s-2)+k(s+1)}=\frac{2}{2+k}=0.05 \\
& \Rightarrow 40=2+k \Rightarrow k=38
\end{aligned}
$$

b)

$$
\begin{aligned}
& K_{p}=\lim _{s \rightarrow 0} K G_{c}(s) G_{p}(s)=\lim _{s \rightarrow 0} \frac{18(s+1)}{(s-1)(s-2)}=9 \\
& e_{\text {ss step }}=\frac{1}{1+K_{p}}=\frac{1}{10}=0.1=e_{s s \text { step }}
\end{aligned}
$$

$e_{\text {ss ramp }}=\infty$ for A Type O Control System. To Sot This,

$$
\begin{aligned}
& K_{V}=\lim _{s \rightarrow 0} S K G_{c}(s) G_{p}(s)=\lim _{s \rightarrow 0} s \frac{j 8(s+1)}{(s-1) Y(s-2)}=0 \\
& e_{s_{\text {ramp }}}=\frac{1}{k_{v}}=00 \\
& e_{s s}=\lim _{s \rightarrow 0} s E(S) \\
& \frac{E(s)}{R(s)}=\frac{1}{1+\frac{18(s+1)}{(s-1)(s-2)}}=\frac{(s-1)(s-2)}{(s-1)(s-2)+18(s+1)} \\
& C_{S S_{S T T P}}=\lim _{s \rightarrow 0} \$ \frac{(s-1)(s-2)}{(s-1)(s-2)+18(s+1)} \frac{1}{8}=\frac{2}{20}=\frac{1}{10}=0.1 . \\
& e_{s s_{\text {_amp }}}=\lim _{s \rightarrow 0} \delta \frac{(s-1)(s-2)}{(s+1)(s-2)+1 s(s+1)} \cdot \frac{1}{s^{*}}=\lim _{s \rightarrow 0} \frac{(s-1)(s-2)}{s[(s-1)(s-2)+1 s(s+1)]} \\
& =00
\end{aligned}
$$

2-b)

Stable, Number of poles on the Imaginary line $=4$
ii)

s^{4}	1	45	50
S^{3}	9	87	0
S^{2}	35.33	50	
S	74.26	0	
S^{0}	50		

The system is stable with all four poles on the left half plane

iii)				
s^{6}	1	14	64	96
s^{5}	5	40	80	0
s^{4}	6	48	96	
s^{3}	0	0		
	24	96		
s^{2}	4	16		
s	0	0		
	8	0		

The system is stable with 2 pole in the LHP and 4 on the imaginary ax
3)
a) Hand sketch the root locus of $1+K G(s)=0$ as K varies from 0 to $+\infty$, where

$$
G(s)=\frac{s+2}{s(s+1)(s+3)^{2}}
$$

\rightarrow opens loop poles ane $0,-1,-3,-3$

$$
11 \text { 11 zero are }-2=
$$

Number of asymptotes are 1 - $m=3$
asymptotes angle $=\frac{(2 k+1) \pi}{3}=60^{\circ}, 180^{\circ}, 300^{\circ}$
Intersection of asymptotes one real axis

$$
x=\frac{\left.\sum p \text { its }-\sum \text { (e xe }\right)}{n-m}=\frac{-1,-3-3+2}{3}=\frac{-5}{3}
$$

The characteristic egg. is

$$
\begin{aligned}
& 1+K G(s)=0 \Rightarrow 1+\frac{k(s+2)}{\left(s^{2}+s\right)\left(s^{2}+6 s+9\right)}=a \\
& s^{4}+7 s^{3}+15 s^{2}+9 s^{2}+k s+2 k=0
\end{aligned}
$$

Construct the array.

$$
\begin{array}{c|ccc}
4 & 15 & 2 k \\
52 & 7 & (9+k) & 0 \\
8 & \frac{105-9 k-4}{7} & 2^{i k} \\
1 & 2 k-9 k)(9+k) & -98 k \\
96-9 k
\end{array}
$$

$$
\begin{aligned}
& 96-9 k>0 \Rightarrow k<\frac{96}{9} \\
& (96-9 k)(9+k)-98 k>0 \Rightarrow \\
& 864-81 k-98 k-9 k^{2}>0 \\
& 864-179 k-9 k^{2}>0 \quad k \leqslant 4
\end{aligned}
$$

for $K=4$
The Auxiliary EMIl. is $\frac{60}{7}+8=0$

$$
\begin{array}{rlrl}
S & = \pm \sqrt{\frac{14}{15} j} \quad & \quad \text { points intersect } \\
& = \pm 0,966 j & \text { The Imkijinary } \\
& \text { line. }
\end{array}
$$

3-b)

$$
\begin{aligned}
& r(t)=\frac{s+3}{s^{2}+7 s+10}=c(t) \\
& \text { i) } 2 \zeta w_{n}=7 \quad w_{n}^{2}=10 \Rightarrow w_{n}^{-}=\sqrt{10}=3.16 \\
& \begin{aligned}
\zeta=\frac{7}{2 \omega_{n}}=\frac{7}{2(3.16)}=1.107 & \Rightarrow \frac{\text { QVENDAMPED }}{\text { SYSTEM }} \\
& \Rightarrow \begin{array}{c}
\text { NECAATVE, ROAL, DISTINTT } \\
\\
\text { ROOTS. }
\end{array}
\end{aligned} \\
& s^{2}+7 s+10=(s+5)(s+2) \Rightarrow \tau_{1}=\frac{1}{5}, \tau_{2}=\frac{1}{2} \\
& T_{s}=4 \tau_{\text {max }}=4\left(\frac{1}{2}\right)=2 \mathrm{sec} \\
& \text { i) } \quad c(s)=\frac{s+3}{s(s+2)(s+5)}=\frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+5} \\
& A=\left.\frac{s+3}{(s+2)(s+5)}\right|_{s=0}=\frac{3}{10} ; B=\left.\frac{s+3}{s(s+5)}\right|_{s=-2}=\frac{1}{-2(3)}=-4 \\
& d=\left.\frac{s+3}{s(s+2)}\right|_{s=-5}=\frac{-2}{-5(-3)}=-\frac{2}{15} \\
& c(t)=\frac{3}{10}-\frac{1}{6} e^{-2 t}-\frac{2}{15} e^{-5 t}, t \geqslant 0 \\
& \text { ii) } \quad C_{S S}=\left|\frac{3+j 2}{(5+j 2)(2+j 2)}\right| \cos (2 t+\theta), \quad \theta=\tan ^{-1} \frac{2}{3}-\tan ^{-1} \frac{2}{5}
\end{aligned}
$$

4-b)
For the system given below in figure 5, estimate the values of K and K_{t} so that a maximum percentage overshoot of 9.6% and a settling time of 0.05 sec for a tolerance band of 1% are achieved.

The system is reduced to

$$
w_{n}^{2}=500 k
$$

$$
2 \xi \omega_{n}=\left(5+5 \omega_{0} \pi_{t}\right)
$$

for 1% setting time we know $t_{s^{\prime}}=\frac{4.6}{\xi \omega_{n}}=0,05$

$$
\begin{aligned}
\therefore q \omega_{n} & =92 \\
\therefore k_{t} & =0,358
\end{aligned}
$$

$$
\begin{aligned}
& M_{P}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}=0.096 \\
& =0 . \sqrt{1-\xi^{2}}=0.0
\end{aligned}
$$

$$
\begin{aligned}
& 2 \xi \sqrt{1-\mathcal{K}^{2}} \\
&= e^{-\pi \xi / \sqrt{1-\xi^{2}}}=0,096 \\
& 1520
\end{aligned}
$$

$$
\xi=0,5979 \Rightarrow w_{n}=153.87
$$

$$
K=\frac{\omega_{n}^{2}}{500}=47.35
$$

c) Consider the standard feedback system shown below in figure 6 .

Figure 6

Thie characteristic EqD. is given by:

$$
\begin{aligned}
& 1+G_{c}(s) C_{p}(s)=0 \\
& 1+\frac{K_{p} s^{\prime}+k i}{s^{4}} \frac{1}{\left(s^{2}+5 s^{3}\right)}=0 \\
& , 5^{3}+5, s^{2}+k_{p}, s^{2}+k_{i}=0 \\
& \because^{\prime}=-4 \text { satisties the expll. } \\
& -64+80-4 k \rho+t i=0 \\
& 16-4 k_{p}+k_{i}=0 \\
& k_{i}=4 k p-16 \\
& 5^{3}+5 ; s^{2}+k_{p} s^{\prime}+4 k_{p}-16=0 \\
& K_{p}>4 \\
& \left(s^{3}+4, s^{2}\right)+\left(s^{2}-16\right)+k p(s+4)=0 \\
& s^{2}(s+4)+\left(s^{\prime}+4\right)(s-4)+k p(s+4)=0 \\
& \left(s^{\prime}+4\right)\left[s^{2}+s^{r}+(k p-4)\right]=0 \\
& r_{2,3}=\frac{-1 \pm \sqrt{1+16-4 k p}}{2} \\
& \text { choose } \omega_{n=2}-\frac{1}{2} \pm j \sqrt{k_{p}-\frac{17}{4}}=-j \omega_{n} \pm j \omega_{n} \sqrt{1-j^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(1-\xi^{2}\right)=k_{p}-\frac{17}{4} \Rightarrow \frac{\xi=0,25}{4}+\frac{17}{4}=k_{p} \Rightarrow \\
& K_{p}=8
\end{aligned}
$$

$$
=\frac{1}{5}\left(\frac{1}{s)} \frac{1}{(0,25+1)}\right.
$$

$$
(a, s(s)
$$

$$
w_{\text {(rad } / \text { es }}
$$

$$
5 \quad \text { io }
$$

iou
ven

The required Bode diagram

