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ABSTRACT 

   

Associative aggregation operators on bounded lattices are special 

aggregation operators that have proven to be useful in many fields like fuzzy 

logics, expert systems, neural networks, data mining, and fuzzy system 

modeling. Nullnorms, uninorms, t-norms, t-conorms, and many other 

operations all belong to the class of associative aggregation operators. One of 

the typical constructions for associative aggregation operators on the unit 

interval [0,1] is the ordinal sum construction. As observed, in general, an 

ordinal sum construction may fail on a general bounded lattice. Motivated by 

the last observation, a new sum-type construction called lattice-based sum has 

been recently introduced by El-Zekey et al. [30]. In this thesis, based on the 

lattice-based sum of (bounded) lattices indexed by a (finite) lattice-ordered 

index set, new methods for constructing nullnorms and uninorms on bounded 

lattices, which are lattice-based sums of their summand sublattices, are 

developed. Subsequently, the obtained results are applied for building several 

new nullnorm and uninorm operations on bounded lattices. As a by-product, 

the lattice-based sum constructions of t-norms and t-conorms obtained by  

El-Zekey [31] are obtained in a more general setting where the lattice-ordered 

index set need not be finite and so-called t-subnorms (t-subconorms) can be 

used (with a little restriction) instead of t-norms (t-conorms) as summands. 

Furthermore, new idempotent nullnorms on bounded lattices, different from 

the ones given in [16], have been also obtained. We point out that, unlike [16], 

in our construction of the idempotent nullnorms, the underlying lattices need 

not be distributive.  
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1 Chapter one 

 Introduction 

1.1 General 
 

Associative aggregation operators on the unit interval are special 

aggregation operators that have proven to be useful in many fields like 

fuzzy logics, expert systems, neural networks, data mining, and fuzzy 

system modeling. t-norms, t-conorms, uninorms, nullnorms and many 

other operations all belong to the general class of associative aggregation 

operators (see e.g., [10]). 

Associative aggregation operators have been also studied on some more 

general structures, for example, bounded partially ordered sets and 

bounded lattices, stimulating some investigations in topology and logic. 

One of typical constructions for associative aggregation operators on the 

unit interval is the ordinal sum construction. There were several attempts 

to generalize this construction method considering a general bounded 

lattice. As observed (see e.g., [67]), in general, an ordinal sum 

construction may fail on a general bounded lattice. 

Inspired by the last observation, a new sum-type construction, called 

lattice-based sum, has been recently introduced [30]. It is a generalization 

of the ordinal sum technique. This is done by allowing for lattice-ordered 

index set instead of linearly ordered index set. The aim of the present 

research is to propose new methods, based on the lattice-based sum, to 

construct various associative aggregation operators on bounded lattices 

such as t-norms, t-conorms, uninorms and nullnorms.  
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1.2 Problem statement 
 

In recent years, several methods for constructing new associative binary 

operations on the unit interval from given associative binary operations 

were proposed, all resembling, yet differing from the ordinal sum of  

t-norms. There have been several attempts to generalize the ordinal sum 

construction considering a general bounded lattice (see e.g., [34, 56, 57, 

65, 67]), inspired first by Goguen’s proposal to consider fuzzy sets with 

membership values from bounded lattices. However, these methods have 

long been blamed for their limitations in constructing new associative 

aggregation and their inability to cope with a general bounded lattice. On 

one hand, as observed in [67], ordinal sum construction may not work on 

bounded lattices. On the other hand in [67], there exist ordinal sum  

t-norms on bounded lattices which are not an ordinal sum of some of their 

sublattices. Summarizing, there is a need for a new sum-type construction 

generalizing the ordinal sum construction and coping very well with 

associative aggregation operators on general bounded lattices. One 

possibility is the lattice-based sum based on lattice-ordered index set 

[30]. Note that, in [30], the focus has been on lattice-based sums of either 

posets or lattices as summand structures only. In this thesis, we will 

investigate and develop some new methods, based on the lattice-based 

sum approach, for constructing various associative aggregation operators 

on bounded lattices.  
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1.3 Objectives 
 

The long-term goal of the research is to develop general methods, based 

on the lattice-based sum scheme to construct various associative 

aggregation operators on bounded lattices such as t-norms, t-conorms, 

uninorms and nullnorms. The result of this study would open new aspects 

for the investigation of aggregation functions on bounded lattices. It 

would also be useful in obtaining associative operations suitable for 

human thinking/evaluation, in several applications. 

 

1.4 Thesis outlines 
 

This thesis is organized in six chapters as follow: 

Chapter One: Presents a brief introduction on the subject of the thesis, 

the objectives, and the motivations.  

Chapter Two: Shows an overview of the lattice-based sum technique for 

building new posets and lattices from given ones. 

Chapter Three: Presents a literature survey on the most important 

associative aggregation operators, their definitions, properties, and 

different construction methods on bounded lattices. 

Chapter Four: Contains our proposal for the construction of nullnorms 

as well as idempotent nullnorms, t-norms and t-conorms on bounded 

lattices. 

Chapter Five: Contains our proposal for the construction of uninorms as 

well as idempotent uninorms, t-norms and t-conorms on bounded lattices. 

Chapter Six: Summarizes the major results of this study and provides 

recommendation for future work. 

The  published papers from this thesis are [33] for nullnorms and [32] for 

uninorms.



 

 

 

 

 

 

 

 

 

 

 

CHAPTER TWO 

 LATTICE-BASED SUM OF BOUNDED 

LATTICES 
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2 Chapter two  

Lattice-based sum of bounded lattices 

 

2.1 Introduction and preliminaries 
 

In the literature, there were several methods on how to build new ordered 

structures from simpler ones such as the disjoint union of ordered 

structures [19], the ordinal sum of posets in the sense of Birkhoff [5, 67] 

(it is also referred to as linear sum of posets [19]). The horizontal sum of 

bounded posets [5, 19] and the lattice-based sum of posets and lattices 

[30].  

As observed in [30], the lattice-based sum technique generalized the well-

known ordinal sum of posets in the sense of birkhoff by allowing for 

lattice-ordered index set instead of linearly-ordered index set. It is 

pointed out in [30] that the lattice-based sum technique extends also the 

horizontal sum of bounded posets based on unstructured index set.  

In this chapter, we review the lattice-based sum technique for building 

new posets and lattices from simpler ones. We start by some concepts 

concerning posets and lattices. 

Definition 2.1: ([5], [19]) 

Let 𝐿 be a set, an order (or partial order) on 𝐿 is a binary relation ≤ on 𝐿 

such that for all 𝑥, 𝑦, 𝑧 ∈ 𝐿,  

i. 𝑥 ≤ 𝑥                                                                     (Reflexive) 

ii. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 imply 𝑥 = 𝑦                                    (Antisymmetric) 

iii. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 imply 𝑥 ≤ 𝑧                               (Transitive) 
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A set 𝐿 equipped with an order relation ≤ is said to be a partially ordered 

set (Poset for short). 

Definition 2.2: ([5], [19]) 

Let 𝐿 be an ordered set and let 𝑆 ⊆ 𝐿. An element 𝑥 ∈ 𝐿 is an upper bound 

of 𝑆 if 𝑠 ≤ 𝑥 for all 𝑠 ∈ 𝑆. 

Definition 2.3: ([5], [19]) 

Let 𝐿 be an ordered set and let 𝑆 ⊆ 𝐿. An element 𝑥 ∈ 𝐿 is a lower bound 

of 𝑆 if 𝑠 ≥ 𝑥 for all 𝑠 ∈ 𝑆. 

Definition 2.4: ([5], [19]) 

Let 𝐿 be an ordered set and let 𝑆 ⊆ 𝐿. The set of all upper bounds of 𝑆 is 

denoted by 𝑆𝑢 and the set of all lower bounds of 𝑆 is denoted by 𝑆𝑙, 

defined as follow 

𝑆𝑢 = {𝑥 ∈ 𝐿|(∀𝑠 ∈ 𝑆) 𝑠 ≤ 𝑥}   and  𝑆𝑙 = {𝑥 ∈ 𝐿|(∀𝑠 ∈ 𝑆) 𝑠 ≥ 𝑥} 

Definition 2.5: ([5], [19]) 

If 𝑆𝑢 has a least element 𝑥, then 𝑥 is called the least upper bound of 𝑆, 

dually, if 𝑆𝑙 has a greatest element 𝑥, then 𝑥 is called the greatest lower 

bound of 𝑆. These two elements are obviously unique for each 𝑆. 

The least upper bound of 𝑆 is sometimes called supermum of 𝑆 and is 

denoted by 𝑆𝑢𝑝 𝑆. The greatest lower bound of 𝑆 is also called infimum 

of 𝑆 and is denoted by 𝑖𝑛𝑓 𝑆 . We write 𝑥 ∨ 𝑦 (reads "𝑥 join 𝑦") in place 

of 𝑠𝑢𝑝{𝑥, 𝑦}; when it exists and 𝑥 ∧ 𝑦 (reads "𝑥 meet 𝑦") in place of 

 𝑖𝑛𝑓{𝑥, 𝑦}; when it exists. 
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Definition 2.6: ([19]) 

Let 𝐿 be an ordered set. Then 𝐿 is a chain if, for all 𝑥, 𝑦 ∈  𝐿 , either  

𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 (that is, if any two elements of 𝐿 are comparable). 

Alternative names for a chain are linearly ordered set and totally ordered 

set.  

 

Definition 2.7: ([5], [19]) 

Let 𝐿 be a non-empty ordered set. If 𝑥 ∨ 𝑦 and  𝑥 ∧ 𝑦 exist for all  

𝑥, 𝑦 ∈ 𝐿, then 𝐿 is called a lattice. 

Definition 2.8: ([5], [19]) 

Let 𝐿 be a lattice and ∅ ≠ 𝑀 ⊆ 𝐿. Then 𝑀 is a sublattice of 𝐿 if for all 

𝑎, 𝑏 ∈ 𝑀 implies 𝑎 ∧ 𝑏 ∈ 𝑀 and 𝑎 ∨ 𝑏 ∈ 𝑀. 

 

Definition 2.9: ([5], [19]) 

A bounded lattice is a lattice (𝐿, ≤, ⊥, ⊤) which has the top and bottom 

elements written as: ⊤ and ⊥, respectively, that is, there exist ⊥, ⊤ ∈ 𝐿 

such that ⊥≤ 𝑥 ≤ ⊤, for all 𝑥 ∈ 𝐿.  

 

Definition 2.10: ([5], [19]) 

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎, 𝑏 ∈ 𝐿. If 𝑎 and 𝑏 are 

incomparable (i.e., 𝑎 ≰ 𝑏 and 𝑏 ≰ 𝑎), we write 𝑎 ∥ 𝑏. 

Definition 2.11: ([5], [19]) 

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎, 𝑏 ∈ 𝐿, where 𝑎 ≤ 𝑏. A 

subinterval [𝑎, 𝑏] of 𝐿, is a sublattice of 𝐿 defined as  

[𝑎, 𝑏] = {𝑥 ∈ 𝐿|𝑎 ≤ 𝑥 ≤ 𝑏} 

Similarly, ]𝑎, 𝑏] = {𝑥 ∈ 𝐿|𝑎 < 𝑥 ≤ 𝑏}, [𝑎, 𝑏[= {𝑥 ∈ 𝐿|𝑎 ≤ 𝑥 < 𝑏}, 

]𝑎, 𝑏[= {𝑥 ∈ 𝐿|𝑎 < 𝑥 < 𝑏}. 
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Example 2.1:  

All ordered structures in Figure 2-1 are examples of bounded lattices.   

                           

                                    

Figure 2-1 Bounded lattices Examples 

Definition 2.12: ([5]) 

A lattice (𝐿, ≤) is a distributive lattice if it satisfies one (or, equivalently, 

both) of the distributive identities  

i) 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) 

ii) 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. 

It has been shown in [5] that in a distributive lattice, for all 𝑥 ∈ 𝐿,  if  

𝑎 ∧ 𝑥 = 𝑎 ∧ 𝑦 and  𝑎 ∨ 𝑥 = 𝑎 ∨ 𝑦, then 𝑥 = 𝑦. 
 

2.2 Lattice-based sum of bounded posets  
 

In this section, we review the lattice-based sum technique for building 

bounded posets from the given ones. First, we would like to list all 

standard customary notations when we deal with lattice-based sums, as 

follow: 

(Λ,⊑) denotes a finite lattice-ordered index set in which each two element 

subset {𝛼, 𝛽} has an infimum denoted by inf {𝛼, 𝛽}, and a supermum 

denoted by sup {𝛼, 𝛽}. For each 𝛼 ∈ Λ, (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) denotes a 
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bounded partially ordered set (poset) with a top element ⊤𝛼 and a bottom 

element  ⊥𝛼 for some 𝛼 ∈ Λ. Lowercase Latin letters (e.g. "𝑥","𝑦" 

and "𝑧") are used as variables ranging over the elements of 𝐿𝛼, and 

lowercase Greek letters (e.g. "𝛼","𝛽" and "𝛾") are used as variables 

ranging over the elements of Λ. If   𝛼, 𝛽 ∈ Λ such that 𝛼 ⊑ 𝛽 but 𝛼 ≠ 𝛽, 

then we will write 𝛼 ⊏ 𝛽. The cardinality (the number of elements) of a 

set 𝐿 will be denoted by |𝐿|.  

Remark 2.1:  

In [30], a lattice-ordered index set need not be finite and each summand 

poset need not be bounded. But, in this thesis, and from a practical point 

of view, we restrict our consideration to finite the lattice-ordered index 

set, and to bounded summand only. 

Definition 2.13: ([30]) 

Consider a finite lattice-ordered index set (Λ,⊑). The 𝛬-sum family is  

a family of bounded posets {(𝐿𝛼, ≤𝛼, ⊥𝛼 , ⊤𝛼)𝛼∈Λ that satisfies the 

following: for all 𝛼, 𝛽 ∈ Λ with 𝛼 ≠ 𝛽 the sets 𝐿𝛼 and 𝐿𝛽 are either 

disjoint or satisfy one of the following two conditions: 

i) 𝐿𝛼 ∩ 𝐿𝛽 = {𝑥𝛼𝛽} with 𝛼 ⊏ 𝛽, where 𝑥𝛼𝛽 is both the top element 

of 𝐿𝛼 and the bottom element of 𝐿𝛽 and where for each 𝜀 ∈ Λ with 

𝛼 ⊏ 𝜀 ⊏ 𝛽 we have 𝐿𝜀 = {𝑥𝛼𝛽} and for all 𝛿, 𝛾 ∈ Λ with 𝛿 ∥ 𝛾,  

𝛿 ⊏ 𝛽 and 𝛼 ⊏ 𝛾 we have 𝐿𝛿 = {𝑦𝛿𝛾} or 𝐿𝛾 = {𝑧𝛿𝛾} where 𝑦𝛿𝛾 is 

the top element of 𝐿inf {𝛿,𝛾} and 𝑧𝛿𝛾 is the bottom element of 

𝐿sup {𝛿,𝛾}. 

ii) 1 ≤ |𝐿𝛼⋂𝐿𝛽| ≤ 2 with 𝛼 ∥ 𝛽, and for each 𝑥𝛼𝛽 = 𝐿𝛼 ∩ 𝐿𝛽, 𝑥𝛼𝛽 is 

the top element of both 𝐿𝛼 and 𝐿𝛽 and the bottom element of 
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𝐿sup {𝛼,𝛽}, or 𝑥𝛼𝛽 is the bottom element of both 𝐿𝛼 and 𝐿𝛽 and the 

top element of 𝐿inf {𝛼,𝛽}. 

Note that, the 𝛬-sum family in Definition 2.13 where referred to as the  

𝛬-sum family of bounded posets while the 𝛬-sum family of bounded 

lattices for those whose all underlying bounded posets 𝐿𝛼 are bounded 

lattices was denoted by ((𝐿𝛼,∧𝛼,∨𝛼))𝛼∈Λ where ∧𝛼 and  ∨𝛼 are the meet 

and join operations on 𝐿𝛼, respectively. 

Definition 2.14: ([30]) 

Let  (Λ,⊑) be a finite lattice-ordered index set and 

let {(𝐿𝛼, ≤𝛼 , ⊥𝛼 , ⊤𝛼)}𝛼∈Λ be a Λ-sum family. The lattice-based sum 

⊕𝛼∈Λ (𝐿𝛼, ≤𝛼 , ⊥𝛼 , ⊤𝛼) is the set 𝐿 = ⋃𝛼∈Λ𝐿𝛼 equipped with the order 

relation ≤ defined by: 

𝑥 ≤ 𝑦 if and only if 

{

∃𝛼 ∈ Λ such that 𝑥, 𝑦 ∈ 𝐿𝛼  and 𝑥 ≤𝛼 𝑦
or
∃𝛼, 𝛽 ∈ Λ such that (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 and 𝛼 ⊏ 𝛽

(2.1) 

This type of lattice-based sum where referred to as lattice-based sum of 

bounded posets. 

Theorem 2.1: ([30]) 

With all assumptions of Definition 2.14, the lattice-based sum  

(𝐿, ≤, ⊥, ⊤) =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) is a bounded partially ordered set. 

Note that, the strategy just described focuses on the union of the carriers 

and an order consistent with both the order of the underlying posets and 

the order of the lattice-ordered index set. Thus, the order relation for 

elements from different summand carriers is inherited from the lattice-

ordered index set.  
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Remark 2.2:  

As shown in [30], if the lattice-ordered index set in Definition 2.14 is  

a chain, then the lattice-based sum reduces to the ordinal sum, i.e., we 

obtain the ordinal sum of posets in the sense of  Birkhoff, in which any 

two posets overlap in at most one point (see [5] and [67]). 

Remark 2.3:  

The lattice-based sum in Definition 2.14 extends also the horizontal sum 

of bounded posets as we can see in Proposition 2.1. 

Recall that a bounded poset (𝑋,≤, ⊥, ⊤) is called a horizontal sum of the 

bounded posets ((𝑋𝑖, ≤𝑖, ⊥, ⊤))𝑖∈𝐼if 𝑋 = ⋃ 𝑋𝑖𝑖∈𝐼  with 𝑋𝑖 ∩ 𝑋𝑗 = {⊥, ⊤} 

whenever 𝑖 ≠ 𝑗, and 𝑥 ≤ 𝑦 if and only if there is an 𝑖 ∈ 𝐼 such that 

{𝑥, 𝑦} ⊆ 𝑋𝑖 and 𝑥 ≤𝑖 𝑦. 

Proposition 2.1: ([30]) 

Let (𝐿, ≤, ⊥, ⊤) be a bounded poset. Then the following are equivalent: 

i) (𝐿, ≤, ⊥, ⊤) is a horizontal sum of the bounded posets 

 ((𝐿𝑖, ≤𝑖, ⊥, ⊤))𝑖∈𝐼. 

ii) (𝐿, ≤, ⊥, ⊤) is a lattice-based sum of the bounded posets  

((𝐿𝛼, ≤𝛼, ⊥, ⊤))𝛼∈Λ, where (Λ,⊑) is the lattice in which Λ is the 

set 𝐼 with two more elements ⊥Λ and ⊤Λ such that 𝐿⊥Λ = {⊥} and  

𝐿⊤Λ = {⊤} and the partial order ⊑ is defined on Λ as:  

for all 𝛼 ∈ Λ, ⊥Λ⊑ 𝛼 and 𝛼 ⊑ ⊤Λ. 
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Example 2.2:  

Consider the lattice-ordered index set (Λ,⊑) in Figure 2-2. Then each of 

the families associated with the structures in Figures 2-3 and 2-4 forms  

a Λ-sum family of bounded posets. Hence each of these structures is  

a lattice-based sum of bounded posets. 

 

Figure 2-2 The lattice (𝛬,⊑) of Example 2.2 

                                  

Remark 2.4:  

In Figure 2-3, we have 𝐿𝛼 ∩ 𝐿𝛽 = {𝑥𝛼𝛽}, where 𝑥𝛼𝛽 is the top element of 

both 𝐿𝛼 and 𝐿𝛽 and the bottom element of 𝐿sup{𝛼,𝛽} where  

sup{𝛼, 𝛽} = ⊤Λ. This satisfies condition (ii) in Definition 2.13. Also, in 

 

Figure 2-3 The Λ-sum family 

1 of Example 2.2 

 

Figure 2-4 The Λ-sum family 

2 of Example 2.2 
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Figure 2-4, we have 𝐿𝛽 ∩ 𝐿⊥Λ = {𝑥𝛽⊥}, where 𝑥𝛽⊥is the top element of 

𝐿⊥Λ and the bottom element of 𝐿𝛽 and for ⊥Λ⊏ 𝛿 ⊏ 𝛽 we have  

𝐿𝛿 = {𝑥𝛽⊥} which is a singleton poset. This satisfies condition (i) in 

Definition 2.13.  

Example 2.3:  

Consider the lattice-ordered index set (Λ,⊑) in Figure 2-5. Then the 

family of bounded posets associated with the structure in Figure  

2-6 is not a Λ-sum family because 𝐿𝛼 ∩ 𝐿𝛽 = {𝑥𝛼𝛽} with 𝑥𝛼𝛽 = ⊤𝛼 =⊥𝛽,  

𝛿 ⊏ 𝛽, 𝛼 ⊏ 𝛾 but neither 𝐿𝛿 = {⊤inf{𝛿,𝛾}} nor 𝐿𝛾 = {⊥sup{𝛿,𝛾}}. Hence the 

structure in Figure 2-6 is not a lattice-based sum for the lattice-ordered 

index set of Figure 2-5 and for the family of bounded posets of Figure  

2-6. The main reason is that the order relation is not consistent with the 

order of the index set, since for 𝑥 ∈ 𝐿𝛿 and 𝑦 ∈ 𝐿𝛾, we have 𝑥 ≤ 𝑦 while 

the only elements 𝛿 and 𝛾 in the index set associated with 𝑥 and 𝑦, 

respectively, are incomparable elements in Λ. a slight modification is by 

putting 𝐿𝛿 = {⊤inf{𝛿,𝛾}} and hence we get the Λ-sum family of bounded 

posets associated with the structure in Figure 2-7 in which the order 

consistency holds, such that, for 𝑥 ∈ 𝐿𝛿 and for 𝑦 ∈ 𝐿𝛾 we have 𝑥 ≤ 𝑦, 

𝑥 ∈ 𝐿𝛿 ∩ 𝐿⊥Λ and 𝑦 ∈ 𝐿𝛾 and hence there exist ⊥Λ, 𝛾 ∈ Λ associated with 

𝑥 and 𝑦, respectively, such that ⊥Λ⊏ 𝛾.  
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Figure 2-5 The lattice (𝛬,⊑) of Example 2.3 

         

For more illustrative examples, we refer to [30]. 

2.3 Lattice-based sum of bounded lattices 
 

In the previous section, we recalled the main results concerning the 

lattice-based sum of bounded posets supported by some examples for 

clarification. In the current section, we will recall the main results 

concerning the lattice-based sum of bounded lattices.  

 

 

Figure 2-6 Not a Λ-sum family   

 

Figure 2-7 Λ-sum family of 

Example 2.3 
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Definition 2.15: ([30])  

Given a lattice-ordered index set (Λ,⊑) and a Λ-sum 

family {(𝐿𝛼, ≤𝛼)}𝛼∈Λ, 𝑥 ∈ ⋃ 𝐿𝛼𝛼∈Λ . We say that an element 𝛼∗ ∈ Λ is  

a maximal (minimal) index of 𝑥 if 𝛼∗ is a maximal (minimal) element of 

the set 𝐼𝑥 = {𝛼 ∈ Λ|𝑥 ∈ 𝐿𝛼}. Denote by 𝐼𝑥
𝑚𝑎𝑥 and 𝐼𝑥

𝑚𝑖𝑛, respectively, the 

set of all maximal and minimal indices of 𝑥. 

Example 2.4:  

Obviously, if {(𝐿𝛼, ≤𝛼)}𝛼∈Λ is a Λ-sum family with finite lattice-index 

set Λ, then, for all 𝑥 ∈ ⋃ 𝐿𝛼𝛼∈Λ , the set  𝐼𝑥 = {𝛼 ∈ Λ|𝑥 ∈ 𝐿𝛼} contains 

maximal and minimal elements.  

Note that, given a Λ-sum family {(𝐿𝛼, ≤𝛼)}𝛼∈Λ and 𝑥, 𝑦 ∈ ⋃ 𝐿𝛼𝛼∈Λ  with  

𝑥 ≠ 𝑦, we write 𝑥 ∥ 𝑦, if for all 𝛼, 𝛽 ∈ Λ such that 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽 we 

have 𝛼 ∥ 𝛽. Also, we write 𝑥 ∥𝛼 𝑦 if 𝑥, 𝑦 ∈ 𝐿𝛼 for some 𝛼 ∈ Λ such that 

𝑥 ≰𝛼 𝑦 and 𝑦 ≰𝛼 𝑥. Obviously, 𝑥 and 𝑦 are incomparable if 𝑥 ∥ 𝑦 or 

𝑥 ∥𝛼 𝑦 for some 𝛼 ∈ Λ. 

 

Lemma 2.1: ([30])  

Let (Λ,⊑) be a finite lattice-ordered index set and let 

{(𝐿𝛼, ≤𝛼, ⊥𝛼 , ⊤𝛼)}𝛼∈Λ be Λ-sum family of bounded posets. If  

𝑥, 𝑦 ∈ ⋃ 𝐿𝛼𝛼∈Λ  with 𝑥 ∥ 𝑦, then  

i) For all 𝛼1, 𝛼2 ∈ 𝐼𝑥
𝑚𝑎𝑥 and 𝛽1, 𝛽2 ∈ 𝐼𝑦

𝑚𝑎𝑥, ⊤inf {𝛼1,𝛽1} = ⊤inf {𝛼2,𝛽2}. 

ii) For all 𝛼1, 𝛼2 ∈ 𝐼𝑥
𝑚𝑖𝑛 and 𝛽1, 𝛽2 ∈ 𝐼𝑦

𝑚𝑖𝑛, ⊥sup{𝛼1,𝛽1}=⊥sup {𝛼2,𝛽2}. 

Example 2.5:  

Consider the lattice-ordered index set (Λ,⊑) in Figure 2-8 and the family 

associated with the structure in Figure 2-9. It is easy to check that the 
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family in Figure 2-9 is a Λ-sum family. Let 𝑥 be the top of 𝐿𝛽2, 𝑦 be the 

top of 𝐿𝛼2 and 𝑧 be the top of 𝐿𝛼1. Then: 

i) It is obvious that 𝑥 ∥ 𝑦 where 𝐼𝑥 = {𝛽2, 𝛿2} and 𝐼𝑦 = {𝛼2, 𝛼3, 𝛿3}. 

For 𝛽2, 𝛿2 ∈ 𝐼𝑥 and 𝛼2, 𝛿3 ∈ 𝐼𝑦 (note that 𝛽2 and 𝛼2 are not 

maximal), we have, 

⊤inf  {𝛽2,𝛿3} = ⊤𝛽1 ≠ ⊤𝛼1 = ⊤inf {𝛿2,𝛼2} 

Of course (see Lemma 2.1), if we replace 𝛼2 by the maximal 𝛼3 

and replace 𝛽2 by the maximal 𝛿2, it will render the equality, such 

that, in this case, we have  

⊤inf{𝛿2,𝛿3} = ⊤𝛿1 = ⊤inf{𝛿2,𝛼3} 

ii) For 𝑥 and 𝑦 as described above, 

inf  {𝑥, 𝑦} = ⊤inf  {𝛿2,𝛿3} = ⊤𝛿1 = ⊤inf  {𝛿2,𝛼3}, 

where 𝛼3 and 𝛿3 are maximal indices of 𝑦 while 𝛿2 is the maximal 

index of 𝑥. Although,  

⊤inf  {𝛽2,𝛿3} = ⊤𝛽1 = ⊤inf  {𝛽2,𝛼3}, 

where 𝛽2 is not maximal, we see that  

inf  {𝑥, 𝑦} ≠ ⊤inf  {𝛽2,𝛿3} = ⊤inf  {𝛽2,𝛼3} 

 

Figure 2-8 The lattice (𝛬,⊑) of Example 2.5 
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Figure 2-9 The Λ-sum family of Example 2.5 

Remark 2.5:  

As pointed out from [30], the consecutive repetition of standard ordinal 

and horizontal sum constructions is covered by the lattice-based sum 

approach, but the opposite is not true, as we can see in the obtained Λ-sum 

family in Figure 2-9, although this family is a Λ-sum family, but it is 

impossible to describe this family as repetition of ordinal and horizontal 

sums. For more details, we refer to [37, 41, 69].   

Definition 2.16: ([30])  

Let (Λ,⊑) be a finite lattice-ordered index set and let  {(𝐿𝛼,∧𝛼,∨𝛼)}𝛼∈Λ 

be a Λ-sum family of bounded lattices. Put 𝐿 = ⋃ 𝐿𝛼𝛼∈Λ . For every  

𝑥 ∈ 𝐿, denote by 𝐼𝑥
𝑚𝑎𝑥 and 𝐼𝑥

𝑚𝑖𝑛 the set of all maximal and minimal indices 

of 𝑥, respectively and define the binary operations ∧ and ∨ on 𝐿 by: 



17 

 

𝑥 ∧ 𝑦 =

{
 
 

 
 𝑥 ∧𝛼 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,

𝑥 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 𝑎𝑛𝑑 𝛼 ⊏ 𝛽,

𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 𝑎𝑛𝑑 𝛽 ⊏ 𝛼,

⊤inf {𝛼∗,𝛽∗} 𝑖𝑓 𝑥 ∥ 𝑦, 𝛼∗ ∈ 𝐼𝑥
𝑚𝑎𝑥 𝑎𝑛𝑑 , 𝛽∗ ∈ 𝐼𝑦

𝑚𝑎𝑥.

        (2.2) 

and 

𝑥 ∨ 𝑦 =

{
 
 

 
 
𝑥 ∨𝛼 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,

𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 𝑎𝑛𝑑 𝛼 ⊏ 𝛽,

𝑥 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 𝑎𝑛𝑑 𝛽 ⊏ 𝛼,

⊥sup{𝛼∗,𝛽∗} 𝑖𝑓 𝑥 ∥ 𝑦, 𝛼∗ ∈ 𝐼𝑥
𝑚𝑖𝑛 𝑎𝑛𝑑 , 𝛽∗ ∈ 𝐼𝑦

𝑚𝑖𝑛.

         (2.3) 

 

Then (𝐿,∧,∨) is the lattice-based sum of all {(𝐿𝛼,∧𝛼,∨𝛼)}𝛼∈Λ. This type of 

lattice-based sum was referred to as lattice-based sum of bounded lattices. 

Theorem 2.2: ([30])  

With all assumptions of Definition 2.16 the lattice-based sum  

(𝐿,∧,∨) =⊕𝛼∈Λ (𝐿𝛼,∧𝛼,∨𝛼) is a bounded lattice. 

Remark 2.6:  

Given a lattice-based sum (𝐿,∧,∨) =⊕𝛼∈Λ (𝐿𝛼,∧𝛼,∨𝛼). The partial order 

relation ≤ on the lattice 𝐿 obtained by setting 𝑥 ≤ 𝑦 in 𝐿 if and only if, 

𝑥 ∧ 𝑦 = 𝑥 coincides with the partial order relation given in Definition 

2.14. One obtains the same partial order relation from the given lattice by 

setting 𝑥 ≤ 𝑦 in 𝐿 if and only if, 𝑥 ∨ 𝑦 = 𝑦.
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3 Chapter three  

Associative aggregation operators on bounded lattices 

 

3.1 Introduction and preliminaries 
 

The concept of aggregation has been introduced in [4, 10, 40] as  

a process of combining several input values into a single output and the 

numerical function performing this process is called an aggregation 

function (it is also called aggregation operator, both terms are used 

interchangeably in the existing thesis).  Aggregation functions are widely 

used in pure and applied mathematics, computer and engineering 

sciences, economics and finance, social science as well as in many other 

applied fields of physics and natural sciences. Thus, a main characteristic 

of the aggregation functions is that they are used in a large of areas and 

disciplines.  

If the number of input values to be aggregated is fixed, say 𝑛, an 

aggregation function is a real function of 𝑛 variables. This is still a too 

general topic. Therefore, in [4, 10, 40] the considerations regarding inputs 

as well as outputs are restricted to some fixed interval [𝑎, 𝑏] ⊆ [−∞,∞], 

in particular [0,1]. 

One of the most important classes of aggregation operators on the unit 

interval is the class of associative aggregation operators. Obviously, there 

exist multiple associative aggregation operators on the unit interval but 

the most important and popular ones are the triangular norms, triangular 

conorms, uninorms and nullnorms (see e.g., [4, 10, 40]). 

Stimulating some investigations in topology and logic, associative 

aggregation operators have been also studied on more general structures 
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such as bounded partially ordered sets and bounded lattices (see e.g., [22, 

23, 53, 60, 72]). Therefore, we aim in this chapter to give a survey on the 

theory of the mentioned associative aggregation operators on bounded 

lattices.  

The general aggregation operator introduced firstly to act on the unit 

interval in [4, 10, 40] and then on any bounded lattice in [23, 53, 60] as 

follow 

Definition 3.1: ([23, 53, 60]) 

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, and 𝑛 ∈  𝑁 be fixed. A mapping  

𝐴: 𝐿𝑛 → 𝐿 is called an n-ary aggregation function on 𝐿 whenever it is 

increasing, 

𝐴(𝐱) ≤ 𝐴(𝐲) whenever 𝐱 ≤  𝐲 (i.e. 𝑥1 ≤ 𝑦1, . . . , 𝑥𝑛 ≤ 𝑦𝑛 )      (3.1) 

and it satisfies boundary conditions 

𝐴(⊥, . . . , ⊥)  = ⊥, 𝐴(⊤, . . . , ⊤)  =  ⊤.                                           (3.2) 

A mapping 𝐵:⋃ 𝐿𝑛𝑛∈𝑁 → 𝐿 is called an extended aggregation function on 

𝐿 whenever 𝐵 | 𝐿𝑛 (𝐵 restricted to 𝐿𝑛) is an n-ary aggregation function on 

𝐿 for any 𝑛 ∈ 𝑁. 

Remark 3.1:  

If 𝐿 = [0,1] is equipped with the standard ordering of reals, Definition 3.1 

turns into the classical definition of an aggregation function on the unit 

interval [4, 10, 40]. 

The monotonicity in all arguments and preservation of the bounds in 

Definition 3.1 are the two fundamental properties that characterize 

general aggregation operators. If any of these properties fails, we cannot 

consider the function 𝐴 as an aggregation operator, because it will provide 

inconsistent output when used. All other properties leading to useful 

subclasses of aggregation operators as we can see in Definition 3.2. 
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Definition 3.2: ([23, 53, 60])  

Let 𝐴 be an aggregation operator on a bounded lattice (𝐿, ≤, ⊥, ⊤), 

i) 𝐴 is said to be associative if  

𝐴(𝑥1, … , 𝑥𝑘, … , 𝑥𝑛) = 𝐴2(𝐴𝑘(𝑥1, … , 𝑥𝑘), 𝐴𝑛−𝑘(𝑥𝑘+1, … , 𝑥𝑛)) 

for all 𝑛 ≥ 2, 𝑘 = 1,… , 𝑛 − 1 and 𝑥𝑖 ∈ 𝐿 (𝑖 = 1,… , 𝑛). 

ii) 𝐴 is said to be commutative if  

𝐴(𝑥1, … , 𝑥𝑛) = 𝐴(𝑥𝜋(1), … , 𝑥𝜋(𝑛)). 

for all 𝑛 ∈ 𝑁+, 𝑥𝑖 ∈ 𝐿 (𝑖 = 1,… , 𝑛) and for all permutations 

𝜋(1),… , 𝜋(𝑛) of {1, … , 𝑛} 

iii) 𝐴 has a neutral element 𝑒 ∈ 𝐿 if for all 𝑛 ≥ 2 and  

𝑥𝑖 ∈ 𝐿 (𝑖 = 1,… , 𝑛), if 𝑥𝑘 = 𝑒 for some 𝑘 ∈ {1,… , 𝑛}, then  

𝐴(𝑥1, … , 𝑥𝑛) = 𝐴(𝑥1, … , 𝑥𝑘−1, 𝑥𝑘+1… , 𝑥𝑛). 

iv) An element 𝑎 ∈ 𝐿 is called a zero element (annihilator) of 𝐴 if  

∀𝑥1, … , 𝑥𝑛 ∈ 𝐿 : 𝑎 ∈ {𝑥1, … , 𝑥𝑛} then 𝐴(𝑥1, … , 𝑥𝑛) = 𝑎. 

v) An element 𝑥 ∈ 𝐿 is called an idempotent element of 𝐴 whenever  

𝐴(𝑥,… , 𝑥) = 𝑥. Therefore, 𝐴 is called an idempotent aggregation 

operator if each 𝑥 ∈ 𝐿 is an idempotent element of 𝐴. 

vi) 𝐴 is called conjunctive whenever 𝐴(𝑥1, … , 𝑥𝑛) ≤ 𝑥𝑖 for all  

𝑖 ∈ {1,… , 𝑛} 

vii) 𝐴 is called disjunctive whenever 𝐴(𝑥1, … , 𝑥𝑛) ≥ 𝑥𝑖 for all  

𝑖 ∈ {1,… , 𝑛} 

 

Remark 3.2: ([53])  

Note that for any bounded lattice (𝐿, ≤, ⊥, ⊤) a dual bounded lattice 

(𝐿𝑑, ≤𝑑 , ⊥𝑑 , ⊤𝑑) can be introduced, where 𝐿𝑑 = 𝐿, 𝑥 ≤𝑑 𝑦 if and only if  

𝑦 ≤ 𝑥, and ⊥𝑑= ⊤,⊤𝑑 =⊥. Evidently, any aggregation function  

𝐴: 𝐿𝑛 → 𝐿 on 𝐿 can be considered also as an aggregation function on 𝐿𝑑. 
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Several properties of 𝐴 on 𝐿 are the same as those of 𝐴 on 𝐿𝑑 (namely, all 

algebraic properties not linked to the orderings ≤ and ≤𝑑). However, 

properties based on the ordering should be modified by the above duality 

(for example, conjunctivity on 𝐿 is equivalent to the disjunctivity on 𝐿𝑑). 

 

In the following, we will recall the definitions and properties as well as 

construction methods for the most important associative aggregation 

operators mentioned earlier on bounded lattices. In the sequel, without 

loss of generality, we will restrict our consideration on the associative 

aggregation operator 𝐴 to two arguments, because due to the associativity, 

𝐴 can be extended to a finite number of arguments. We start by triangular 

norms and triangular conorms. 

 

3.2 Triangular norms and triangular conorms 
 

3.2.1 Basic definitions and properties 
 

The triangular norms and triangular conorms were introduced by 

Schweitzer and sklar [68] aiming at an extension of the triangle 

inequality and following some ideas of Menger [58]. These operators 

were studied in the framework of many-valued and fuzzy logics in  

[1, 38, 39, 42, 43]. They were also studied by many authors in other 

papers [2, 3, 52, 59]. Although the triangular norms and triangular 

conorms were strictly defined on the unit interval, they were mostly 

studied on bounded lattices [21, 22, 72].  
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Definition 3.3: ([67])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice. The operation 𝑇: 𝐿2 → 𝐿 is called  

a triangular norm (t-norm) if the following conditions are fulfilled for 

all 𝑥, 𝑦, 𝑧 ∈ 𝐿: 

i. 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥)                                      (Commutativity) 

ii. 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧)                   (Associativity) 

iii. 𝑇(𝑥, 𝑧) ≤ 𝑇(𝑦, 𝑧) whenever 𝑥 ≤ 𝑦           (Monotonicity) 

iv. 𝑇(𝑥, ⊤) = 𝑥                                               (Neutral element) 

Definition 3.4: ([34])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice. The operation 𝑆: 𝐿2 → 𝐿 is called  

a triangular conorm (t-conorm) if it is commutative, associative, 

increasing with respect to both variables and has a neutral element  

⊥∈ 𝐿. 

Example 3.1:  

There exist at least two t-norms and two t-conorms acting on any 

bounded lattice 𝐿: 

• The minimum 𝑇𝑀
𝐿 : 𝐿2 → 𝐿, 𝑇𝑀

𝐿 (𝑥, 𝑦) = 𝑥 ∧ 𝑦. 

• The drastic product 𝑇𝐷
𝐿: 𝐿2 → 𝐿, 

𝑇𝐷
𝐿(𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓 ⊤ ∈ {𝑥, 𝑦},
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                

• The maximum 𝑆𝑀
𝐿 : 𝐿2 → 𝐿, 𝑆𝑀

𝐿 (𝑥, 𝑦) = 𝑥 ∨ 𝑦. 

• The drastic sum 𝑆𝐷
𝐿 : 𝐿2 → 𝐿, 

𝑆𝐷
𝐿(𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 ⊥∈ {𝑥, 𝑦},
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Main properties:  

The t-norm and t-conorm operations introduced in Definition 3.3 and 

Definition 3.4, respectively, have the following properties on any 

bounded lattice (𝐿, ≤, ⊥, ⊤) 

i) For any t-norm 𝑇 and any t-conorm 𝑆 on 𝐿, the following 

additional boundary conditions are satisfied 

𝑇(𝑥, ⊥) = 𝑇(⊥, 𝑥) =⊥, 𝑆(𝑥, ⊤) = 𝑆(⊤, 𝑥) = ⊤ 

It means that ⊥∈ 𝐿 is acting as the zero element of 𝑇 and ⊤ ∈ 𝐿 is 

acting as the zero element of 𝑆. 

ii) If, for two t-norms 𝑇1 and 𝑇2, the inequality 𝑇1(𝑥, 𝑦) ≤ 𝑇2(𝑥, 𝑦) 

holds for all (𝑥, 𝑦) ∈ 𝐿2, then we say that 𝑇1 is weaker than 𝑇2 

(equivalent to 𝑇2 is stronger than 𝑇1) and we write 𝑇1 ≤ 𝑇2. 

Similarly, in the t-conorm case if 𝑆1 ≤ 𝑆2, then we say that 𝑆1 is 

weaker than 𝑆2 (equivalent to 𝑆2 is stronger than 𝑆1). 

iii) Due to the monotonicity of 𝑇, then for each t-norm 𝑇, and for each 

(𝑥, 𝑦) ∈ 𝐿2 we have both 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥, ⊤) = 𝑥 and 

𝑇(𝑥, 𝑦) ≤ 𝑇(⊤, 𝑦) = 𝑦. Also, for all (𝑥, 𝑦) ∈ 𝐿\{⊥, ⊤} we 

trivially have 𝑇(𝑥, 𝑦) ≥⊥= 𝑇𝐷
𝐿(𝑥, 𝑦) and hence, we have  

𝑇𝐷
𝐿 ≤ 𝑇 ≤ 𝑇𝑀

𝐿  

It means that, the drastic product t-norm is the weakest t-norm and 

the minimum t-norm is the strongest one. In a similar way and by 

using the duality, in the t-conorm case, we have 

𝑆𝑀
𝐿 ≤ 𝑆 ≤ 𝑆𝐷

𝐿  

The only idempotent t-norm 𝑇 on 𝐿 is the minimum 𝑇𝑀
𝐿  and the 

only idempotent t-conorm 𝑆 on 𝐿 is the maximum 𝑆𝑀
𝐿 . 
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Remark 3.3:  

Note that, if 𝐿 = [0,1] (i.e., 𝐿 is the classical unit interval), then we 

have the following: 

i) There exist uncountable many t-norms and t-conorms acting 

on [0,1]. However, the following are the four basic t-norms and 

t-conorms acting on [0,1] extracted from [52] 

• 𝑇𝑀(𝑥, 𝑦) = min(𝑥, 𝑦),                        (Minimum) 

• 𝑇𝑃(𝑥, 𝑦) = 𝑥. 𝑦,                                   (Product) 

• 𝑇𝐿(𝑥, 𝑦) = max(𝑥 + 𝑦 − 1,0),           (Lukasiewiz t-norm) 

• 𝑇𝐷(𝑥, 𝑦) = {
0 𝑖𝑓 (𝑥, 𝑦) ∈ [0,1[2,
min (𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (Drastic 

product) 

• 𝑆𝑀(𝑥, 𝑦) = max(𝑥, 𝑦),                     (Maximum) 

• 𝑆𝑃(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥. 𝑦                  (Probabilistic sum) 

• 𝑆𝐿(𝑥, 𝑦) = min(𝑥 + 𝑦, 1)                (Lukasiewiz t-conorm) 

• 𝑆𝐷(𝑥, 𝑦) = {
1 𝑖𝑓 (𝑥, 𝑦) ∈]0,1]2,
max(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (Drastic 

sum) 

ii) Due to monotonicity of 𝑇 and 𝑆, we have the following order 

for the four basic t-norms and t-conorms on [0,1]  

𝑇𝐷 ≤ 𝑇𝐿 ≤ 𝑇𝑃 ≤ 𝑇𝑀,      𝑆𝑀 ≤ 𝑆𝑃 ≤ 𝑆𝐿 ≤ 𝑆𝐷 

3.2.2 Construction methods 
 

There are many ways for constructing t-norms and t-conorms from 

given ones on the unit interval such as Pseudo-inverse of monotone 

functions, additive and multiplicative generators and ordinal sums 

[52]. The latter is the most important one for this purpose. Since  

t-norms are special compact semigroups (i.e., t-norms are binary and 
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associative functions with neutral element 1), the concept of ordinal 

sums in the sense of Clifford [17] provided a method to construct new 

t-norms from given ones (similarly, for t-conorms by duality). There 

are several papers concerning ordinal sums of t-norms (t-conorms) on 

the unit interval, see e.g. [46, 47, 51, 52]. Stimulating some 

investigation in topology and logic, the ordinal sum construction was 

generalized on a general bounded lattices, see e.g. [15, 34, 56, 57, 65-

67], inspired first of all by Goguen’s proposal to consider fuzzy sets 

with membership values from a bounded lattices.  In the following we 

will recall all attempts for constructing t-norms and t-conorms on 

bounded lattices via the ordinal sum method. 

 

Definition 3.5: ([66, 67])  

Given a bounded lattice (𝐿, ≤, ⊥, ⊤), a linearly ordered index 

set (𝐼, ≼𝐼), a family of pairwise disjointed subintervals 

of 𝐿, {]𝑎𝑖, 𝑏𝑖[}𝑖∈𝐼 and a family of t-norms {𝑇[𝑎𝑖,𝑏𝑖]}
𝑖∈𝐼

 on the 

corresponding intervals {[𝑎𝑖, 𝑏𝑖]}𝑖∈𝐼. The operation 𝑇: 𝐿2 → 𝐿 defined 

as follows: 

𝑇(𝑥, 𝑦) = {
𝑇[𝑎𝑖,𝑏𝑖](𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎𝑖 , 𝑏𝑖]

2,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒.

                  (3.3) 

is called the ordinal sum of the family {𝑇[𝑎𝑖,𝑏𝑖]}
𝑖∈𝐼

on 𝐿. 

By duality, we can define the ordinal sum of t-conorms on bounded 

lattices in the following way  

Definition 3.6: ([66, 67])  

Given a bounded lattice (𝐿, ≤, ⊥, ⊤), a linearly ordered index 

set  (𝐼, ≼𝐼), a family of pairwise disjointed subintervals 
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of 𝐿, {]𝑎𝑖, 𝑏𝑖[}𝑖∈𝐼 and a family of t-conorms {𝑆[𝑎𝑖,𝑏𝑖]}
𝑖∈𝐼

 on the 

corresponding intervals {[𝑎𝑖, 𝑏𝑖]}𝑖∈𝐼. The operation 𝑆: 𝐿2 → 𝐿 defined 

as follow 

𝑆(𝑥, 𝑦) = {
𝑆[𝑎𝑖,𝑏𝑖](𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎𝑖, 𝑏𝑖]

2,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒.

              (3.4) 

is called the ordinal sum of the family {𝑆[𝑎𝑖,𝑏𝑖]}
𝑖∈𝐼

 on 𝐿. 

Note that, if 𝐿 = [0,1] (𝐿 is the classical unit interval) then the ordinal 

sums 𝑇 and 𝑆 defined in Equations (3.3) and (3.4), respectively, are 

reduced to the ordinal sum of t-norms and t-conorms on the unit 

interval [52]. It has been shown in [52], that the ordinal sums 𝑇 and 𝑆 

are t-norm and t-conorm for any family of t-norms and t-conorms on 

the unit interval, but as shown in [67], [34], the ordinal sums 𝑇 and 𝑆 

in Definition 3.5 and Definition 3.6 are not a t-norm and a t-conorm on 

a general bounded lattice 𝐿, respectively. This can be seen in the 

following example for ordinal sums 𝑇 and 𝑆 of one summand only.  

Example 3.2:  

Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-1,  

a subintervals [𝑏, ⊤] = {𝑏, 𝑐, ⊤} and [⊥, 𝑏] = {⊥, 𝑑, 𝑏]. The ordinal 

sum of the t-norm 𝑇𝐷
[𝑏,⊤]

 is the operator 𝑇 defined by Equation (3.3) 

which values are written in Table 3-1. Also, the ordinal sum of the  

t-conorm 𝑆𝐷
[⊥,𝑏]

 is the operator 𝑆 defined by Equation (3.4) which 

values are written in Table 3-2. The ordinal sums 𝑇 and 𝑆 described 

above are not a t-norm and a t-conorm on 𝐿, respectively, such that, if 

we consider 𝑎, 𝑐 ∈ 𝐿, then we have  
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𝑇(𝑇(𝑐, 𝑐), 𝑎) = 𝑇 (𝑇𝐷
[𝑏,⊤](𝑐, 𝑐), 𝑎) = 𝑇(𝑏, 𝑎) = 𝑏 ∧ 𝑎 = 𝑑, 

𝑇(𝑐, 𝑇(𝑐, 𝑎)) = 𝑇(𝑐, 𝑐 ∧ 𝑎) = 𝑇(𝑐, 𝑎) = 𝑐 ∧ 𝑎 = 𝑎. 

Since 𝑑 ≠ 𝑎, 𝑇 is not associative. Also, it is easy to see that 𝑎 ≤ 𝑐, but 

we have  

𝑇(𝑎, 𝑐) = 𝑎 ∧ 𝑐 = 𝑎,  𝑇(𝑐, 𝑐) = 𝑇𝐷
[𝑏,⊤](𝑐, 𝑐) = 𝑏 

Since 𝑎 ∥ 𝑏 (𝑇(𝑎, 𝑐) ∥ 𝑇(𝑐, 𝑐) for 𝑎 ≤ 𝑐), 𝑇 is not monotone.  

Similarly, if we consider 𝑎, 𝑑 ∈ 𝐿, then we have  

𝑆(𝑆(𝑑, 𝑑), 𝑎) = 𝑆 (𝑆𝐷
[⊥,𝑏](𝑑, 𝑑), 𝑎) = 𝑆(𝑏, 𝑎) = 𝑏 ∨ 𝑎 = 𝑐, 

𝑆(𝑑, 𝑆(𝑑, 𝑎)) = 𝑆(𝑑, 𝑑 ∨ 𝑎) = 𝑆(𝑑, 𝑎) = 𝑑 ∨ 𝑎 = 𝑑. 

Since 𝑐 ≠ 𝑑, 𝑆 is not associative. Also, it is easy to see that 𝑑 ≤ 𝑎, but 

we have  

𝑆(𝑑, 𝑑) = 𝑆𝐷
[⊥,𝑏](𝑑, 𝑑) = 𝑏,  𝑆(𝑑, 𝑎) = 𝑑 ∨ 𝑎 = 𝑎 

Since 𝑏 ∥ 𝑎, 𝑆 is not monotone. 

To save time and effort to test the associativity of  𝑇 (similarly, for 𝑆) 

of Example 3.2, the python code in appendix 𝐴 can be used which give 

the output “(False, (a, c, c))” to indicate that 𝑇 is not 

associative  

i.e. 𝑇(𝑎, 𝑇(𝑐, 𝑐)) ≠ 𝑇(𝑇(𝑎, 𝑐), 𝑐) 
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Figure 3-1 The lattice 𝐿 of Example 3.2 

          

As we can see in Example 3.2, the ordinal sum construction method 

may not work to construct t-norms and t-conorms from given ones on 

a general bounded lattice.  

Note that, as shown in [65, 67], if the underlying bounded lattice 𝐿 is 

describable as ordinal sum of intervals, then for any family of t-norms  

(t-conorms) on that intervals, the resultant ordinal sums 𝑇 (𝑆) will be  

a t-norm (a t-conorm) on 𝐿. But the converse isn’t true in general, such 

that (see Example 4.2 in [67]), there exist ordinal sum t-norms on  

a bounded lattice 𝐿, although 𝐿 isn’t an ordinal sum of intervals. 

Table 3-1 The operation 𝑇 

on 𝐿 of Example 3.2 

𝑇 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑑 ⊥ 𝑑 𝑑 𝑑 𝑑 𝑑 
𝑎 ⊥ 𝑑 𝑎 𝑑 𝑎 𝑎 
𝑏 ⊥ 𝑑 𝑑 𝑏 𝑏 𝑏 
𝑐 ⊥ 𝑑 𝑎 𝑏 𝑏 𝑐 
⊤ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 

 

Table 3-2 The operation 𝑆 

on 𝐿 of Example 3.2 

𝑆 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
𝑑 𝑑 𝑏 𝑎 𝑏 𝑐 ⊤ 
𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 ⊤ 
𝑏 𝑏 𝑏 𝑐 𝑏 𝑐 ⊤ 
𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 ⊤ 
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 

 



29 

 

Therefore, for necessary and sufficient conditions to be met to ensure 

that the ordinal sums 𝑇 and 𝑆 in Equations (3.3) and (3.4) are, 

respectively a t-norm and  a t-conorm on a general bounded lattice, the 

authors in [65, 67] have presented a good discussion. These conditions 

are recalled in Theorem 3.1 for ordinal sum 𝑇 only. The same results 

for 𝑆 can be obtained by duality. 

Theorem 3.1: ([65, 67])  

Consider some bounded lattice (𝐿, ≤, ⊥, ⊤), some index set 𝐼, and  

a family of pairwise disjoint subintervals  {]𝑎𝑖 , 𝑏𝑖[}𝑖∈𝐼 of 𝐿. Then the 

following are equivalent: 

i) The ordinal sum 𝑇: 𝐿2 → 𝐿 defined by Equation (3.3) is a t-

norm for arbitrary 𝑇[𝑎𝑖,𝑏𝑖] on [𝑎𝑖, 𝑏𝑖]. 

ii) For all 𝑥 ∈ 𝐿 and for all 𝑖 ∈ 𝐼 it holds that 

a) If 𝑥 is incomparable to 𝑎𝑖, then it is incomparable to all  

𝑢 ∈ [𝑎𝑖, 𝑏𝑖[. 

b) If 𝑥 is incomparable to 𝑏𝑖, then it is incomparable to all  

𝑢 ∈]𝑎𝑖, 𝑏𝑖]. 

Theorem 3.1 states that, if the underlying bounded lattice 𝐿 is 

describable as ordinal or horizontal sum of chains, then for any family 

of t-norms (t-conorms) on such bounded lattice, the ordinal sums 𝑇 and 

𝑆 in Equations (3.3) and (3.4) are, respectively, a t-norm and a t-

conorm on 𝐿. 

Example 3.3:  

Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) shown in Figure 3-1,  

a subinterval [𝑑, 𝑐] = {𝑑, 𝑎, 𝑏, 𝑐}. Then, for any t-norm 𝑇[𝑑,𝑐] on [𝑑, 𝑐], 

𝑇 defined by Equation (3.3) is a t-norm on 𝐿. Also, for any  
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t-conorm 𝑆[𝑑,𝑐] on [𝑑, 𝑐], 𝑆 defined by Equation (3.4) is a t-conorm 

on 𝐿. The main reason is that, 𝐿 is describable as ordinal sum of 

intervals, i.e. 𝐿 = [⊥, 𝑑] ⊕ [𝑑, 𝑐] ⊕ [𝑐, ⊤].  

It is worth to be mentioned that, the conditions given in Theorem 3.1 

do not seem very efficient to be used in order to prove whether  

a specific ordinal sum 𝑇, with respect to a particular family of t-norms, 

is a t-norm, because the ordinal sum 𝑇 might be a t-norm even when is 

not a t-norm for any family of t-norms, as we can see in the following 

example which is extracted from [57]. 

Example 3.4:  

Consider the lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-2 and the ordinal sum 𝑇 of 

the t-norm 𝑇[⊥,𝑏], given by Equation (3.3), whose values are written in 

Table 3-3. We see that [⊥, 𝑏] does not satisfy the conditions given in 

Theorem 3.1(ii), since 𝑥 and 𝑏 are incomparable, 𝑐 ≤ 𝑥 and 𝑐 ∈] ⊥, 𝑏]. 

Although, 𝑇 is a t-norm, which can be easily checked.  

Again, we can use the python code in appendix 𝐵 for testing the 

associativity of 𝑇 of Example 3.4 which give the output “(True, 

None)” to indicate that 𝑇 is associative in all cases. 
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[56] and [57] gave extra necessary and sufficient conditions to ensure 

that an ordinal sum of t-norms is a t-norm on bounded lattices. It turned 

out from [56] that, to check if an ordinal sum is a t-norm for any family 

of t-norms, we only need to consider on each subinterval a drastic  

t-norm (which is the simplest t-norm) and to verify if the new ordinal 

sum is a t-norm.  

Now, we need to recall all other attempts for constructing t-norms and  

t-conorms on bounded lattices via ordinal sum technique. We start by 

the constructions given in [34]. 

 

Theorem 3.2: ([34])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎 ∈ 𝐿\{⊥, ⊤}. If 𝑉 is  

a t-norm on [𝑎, ⊤] and 𝑊 is a t-conorm on [⊥, 𝑎], then the functions 

𝑇1: 𝐿
2 → 𝐿 and 𝑆1: 𝐿

2 → 𝐿 are, respectively, a t-norm and a t-conorm 

on 𝐿, where  

𝑇1(𝑥, 𝑦) = {

𝑉(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ [𝑎, ⊤[,

𝑥 ∧ 𝑦 𝑖𝑓 ⊤ ∈ {𝑥, 𝑦},
𝑥 ∧ 𝑦 ∧ 𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                              (3.5) 

 

Figure 3-2 The lattice 𝐿 of 

Example 3.4 

Table 3-3 The t-norm 𝑇 on 

𝐿 of Example 3.4 

𝑇 ⊥ 𝑐 𝑑 𝑏 𝑥 ⊤ 
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑐 ⊥ 𝑐 ⊥ 𝑐 𝑐 𝑐 
𝑑 ⊥ ⊥ ⊥ 𝑑 ⊥ 𝑑 
𝑏 ⊥ 𝑐 𝑑 𝑏 𝑐 𝑏 
𝑥 ⊥ 𝑐 ⊥ 𝑐 𝑥 𝑥 
⊤ ⊥ 𝑐 𝑑 𝑏 𝑥 ⊤ 
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and 

𝑆1(𝑥, 𝑦) = {

𝑊(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈] ⊥, 𝑎],

𝑥 ∨ 𝑦 𝑖𝑓 ⊥∈ {𝑥, 𝑦},
𝑥 ∨ 𝑦 ∨ 𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                            (3.6) 

In  [15] another construction methods for t-norms and t-conorms from 

given ones on bounded lattices have been presented. These 

constructions are also based on one starting t-norm 𝑉 and one starting 

t-conorm 𝑊 but it is different from the constructions methods in 

Theorem 3.2, as we can see in Theorem 3.3 

Theorem 3.3: ([15])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎 ∈ 𝐿\{⊥, ⊤}. If 𝑉 is  

a t-norm on [𝑎, ⊤] and 𝑊 is a t-conorm on [⊥, 𝑎], then the functions 

𝑇2: 𝐿
2 → 𝐿 and 𝑆2: 𝐿

2 → 𝐿 are, respectively, a t-norm and a t-conorm 

on 𝐿, where  

𝑇2(𝑥, 𝑦) = {
𝑉(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ [𝑎, ⊤[,

𝑥 ∧ 𝑦 𝑖𝑓 ⊤ ∈ {𝑥, 𝑦},
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                               (3.7) 

and 

𝑆2(𝑥, 𝑦) = {
𝑊(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈] ⊥, 𝑎],

𝑥 ∨ 𝑦 𝑖𝑓 ⊥∈ {𝑥, 𝑦},
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                             (3.8) 

Example 3.5:  

Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-1. Let  

𝑇[𝑏,⊤] = 𝑇𝐷
[𝑏,⊤]

 and  𝑆[⊥,𝑏] = 𝑆𝐷
[⊥,𝑏]

 . It is easy to check that the function 

𝑇1 whose values are written in Table 3-4 is a t-norm on 𝐿 for the t-norm 

𝑇[𝑏,⊤] using Equation (3.5) and the function 𝑆1 whose values are 

written in Table 3-5 is a t-conorm on 𝐿 for the t-conorm 𝑆[⊥,𝑏] using 
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Equation (3.6). Also, the function 𝑇2 whose values are written in Table 

3-6 is a t-norm on 𝐿 for the t-norm 𝑇[𝑏,⊤] using Equation (3.7) and the 

function 𝑆2 whose values are written in Table 3-7 is a t-conorm on 𝐿 

for the t-conorm 𝑆[⊥,𝑏] using Equation (3.8). 

        

         

Remark 3.4:  

Given a bounded lattice (𝐿, ≤, ⊥, ⊤). The operations 𝑇1, 𝑇2, 𝑆1 and 𝑆2 

just described in Theorems 3.2 and 3.3, are based on one starting  

t-norm 𝑉 acting on a subinterval [𝑎, ⊤] in the t-norm case, and one 

starting t-conorm 𝑊 acting on a subinterval [⊥, 𝑎] in the t-conorm case. 

That is, we cannot force 𝑇1, 𝑇2, 𝑆1 and 𝑆2 to coincide with  

Table 3-4 The t-norm 𝑇1 on 

𝐿 of Example 3.5 

𝑇1 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑑 ⊥ 𝑑 𝑑 𝑑 𝑑 𝑑 
𝑎 ⊥ 𝑑 𝑑 𝑑 𝑑 𝑎 
𝑏 ⊥ 𝑑 𝑑 𝑏 𝑏 𝑏 
𝑐 ⊥ 𝑑 𝑑 𝑏 𝑏 𝑐 
⊤ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 

 

Table 3-5 The t-conorm 𝑆1 

on 𝐿 of Example 3.5 

𝑆1 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
𝑑 𝑑 𝑏 𝑎 𝑏 𝑐 ⊤ 
𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 ⊤ 
𝑏 𝑏 𝑏 𝑐 𝑏 𝑐 ⊤ 
𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 ⊤ 
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 

 

Table 3-6 The t-norm 𝑇2 on 

𝐿 of Example 3.6 

𝑇2 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑑 ⊥ ⊥ ⊥ ⊥ ⊥ 𝑑 
𝑎 ⊥ ⊥ ⊥ ⊥ ⊥ 𝑎 
𝑏 ⊥ ⊥ ⊥ 𝑏 𝑏 𝑏 
𝑐 ⊥ ⊥ ⊥ 𝑏 𝑏 𝑐 
⊤ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 

 

Table 3-7 The t-conorm 𝑆2 

on 𝐿 of Example 3.6 

𝑆2 ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
⊥ ⊥ 𝑑 𝑎 𝑏 𝑐 ⊤ 
𝑑 𝑑 𝑏 ⊤ 𝑏 ⊤ ⊤ 
𝑎 𝑎 ⊤ ⊤ ⊤ ⊤ ⊤ 
𝑏 𝑏 𝑏 ⊤ 𝑏 ⊤ ⊤ 
𝑐 𝑐 ⊤ ⊤ ⊤ ⊤ ⊤ 
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 
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a predescribed t-norm 𝐻 on [⊥, 𝑎] and a t-conorm 𝐻 on [𝑎, ⊤] and 

expect that 𝑇1 and  𝑇2 are still a t-norm and 𝑆1 and 𝑆2  a t-conorm on 𝐿, 

respectively. 

3.3 Uninorms  
 

3.3.1 Basic definitions and properties 
 

Uninorms on the unit interval are one of the most important associative 

aggregation operators with neutral element 𝑒 ∈ [0,1] that generalize  

t-norms and t-conorms operators. This generalization stems from the 

location of the neutral element, such that, in the uninorm case, the 

neutral element is any element laying anywhere on the unit interval 

rather than at 1 as in the t-norm case or at 0 as in the t-conorm case. 

This operators have been firstly introduced in [71]. They were also 

studied on the unit interval by many authors in other papers, for 

example, in [18, 20, 24, 27-29, 36, 44, 63, 64]. Recently, this operators 

have been introduced on bounded lattices in [50], showing the 

existence of uninorms on an arbitrary bounded lattice 𝐿 with the neutral 

element 𝑒 laying anywhere in the bounded lattice 𝐿, using the fact that 

the t-norms and t-conorms on arbitrary bounded lattice 𝐿 always exist. 

Our interest in the construction of these operations requires us to 

mention that there were several methods for constructing uninorms on 

bounded lattices introduced in [7, 11, 14, 50]. We will recall all of these 

constructions after some concepts and properties concerning uninorms 

on bounded lattices. 
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Definition 3.7: ([50])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice. Operation 𝑈: 𝐿2 → 𝐿 is called  

a uninorm on 𝐿 if it is commutative, associative, increasing with 

respect to both variables and has a neutral element 𝑒 ∈ 𝐿. 

It is clear form Definition 3.7 that the t-norm and the t-conorm 

operators are special cases of uninorm operator, such that, if 𝑒 = ⊤, 

then it is the case of t-norm, also if 𝑒 =⊥, then it is the case of t-conorm. 

 

Definition 3.8: ([11])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, 𝑒 ∈ 𝐿\{⊥, ⊤} and 𝑈 a uninorm on 

𝐿 with the neutral element 𝑒. 

i) 𝑈 is called a conjunctive uninorm if 𝑈(⊥, ⊤) =⊥. 

ii) 𝑈 is called a disjunctive uninorm if 𝑈(⊥, ⊤) = ⊤. 

 

Proposition 3.1: ([50])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, 𝑒 ∈ 𝐿\{⊥, ⊤} and 𝑈 a uninorm on 

𝐿 with the neutral element 𝑒, then  

i) 𝑇𝑈 = 𝑈|[⊥,𝑒]2: [⊥, 𝑒]
2 → [⊥, 𝑒] is a t-norm on [⊥, 𝑒]. 

ii) 𝑆𝑈 = 𝑈|[𝑒,⊤]2: [𝑒, ⊤]
2 → [𝑒, ⊤] is a t-conorm on [𝑒, ⊤]. 

Proposition 3.2: ([50])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, and let 𝑒 ∈ 𝐿\{⊥, ⊤} and 𝑈  

a uninorm on 𝐿 with the neutral element 𝑒, then the following hold: 

i) 𝑥 ∧ 𝑦 ≤ 𝑈(𝑥, 𝑦) ≤ 𝑥 ∨ 𝑦 ∀(𝑥, 𝑦) ∈ [⊥, 𝑒] × [𝑒, ⊤] ∪ [𝑒, ⊤] ×

[⊥, 𝑒]. 

ii) 𝑈(𝑥, 𝑦) ≤ 𝑥 ∀(𝑥, 𝑦) ∈ 𝐿 × [⊥, 𝑒]. 

iii) 𝑈(𝑥, 𝑦) ≤ 𝑦 ∀(𝑥, 𝑦) ∈ [⊥, 𝑒] × 𝐿. 

iv) 𝑥 ≤ 𝑈(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐿 × [𝑒, ⊤]. 
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v) 𝑦 ≤ 𝑈(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ [𝑒, ⊤] × 𝐿. 

3.3.2 Construction methods 
 

On the unit interval, (see Figure 3-3), a uninorm 𝑈 with neutral element 

𝑒 is acting as a t-norm on [0, 𝑒]2 and a t-conorm on [𝑒, 1]2 while on 

the remaining parts of the unit square, a uninorm is acting as averaging 

aggregation function between the minimum and maximum operators. 

It means that, we can construct a uninorm 𝑈 on the unit interval [0,1] 

by means of any t-norm 𝑇 and any t-conorm 𝑆 acting on [0,1] just 

describe 𝑈 on the rest of the unit square, for example, for any t-norm 

𝑇 and any t-conorm 𝑆 on [0,1], if we consider that  

𝑈(𝑥, 𝑦) = min (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ [0, 𝑒] × [𝑒, 1] ∪ [𝑒, 1] × [0, 𝑒], 

then we obtain a uninorm 𝑈 belonging to the general class of minimum 

uninorms denoted by 𝑈𝑚𝑖𝑛 (see Figure 3-4 (a)). Similarly, if   

𝑈(𝑥, 𝑦) = max (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ [0, 𝑒] × [𝑒, 1] ∪ [𝑒, 1] × [0, 𝑒] 

then we obtain a uninorm 𝑈 belonging to the general class of maximum 

uninorms denoted by 𝑈𝑚𝑎𝑥 (see Figure 3-4 (b)).  

In the case of bounded lattice (𝐿, ≤, ⊥, ⊤), we may have one or more 

elements incomparable with 𝑒 and hence the characterization of 

uninorms on bounded lattices is different from given ones on the unit 

intervals. In [49] a characterization of uninorms on bounded lattices 

has been introduced by means of a t-norm 𝑇, a t-conorm 𝑆 and four 

symmetric aggregation functions 𝐻1, 𝐻2, 𝐻3 and 𝐻4 (see Figure 3-5). 

But, as shown in [49], recalling the problems with constructing 

triangular norms (conorms) on a bounded lattice by means of ordinal 

sum approach, it is not surprising that we are not able to ensure the 

existence of a proper uninorm 𝑈 acting on a bounded lattice 𝐿, with  
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a neutral element 𝑒 ∈ 𝐿 \{⊥, ⊤}. There exist several attempts to 

construct uninorms on bounded lattices. We start by two constructions 

given in [50]. 

 

Figure 3-3 The structure of uninorm on [0,1] 

 

Figure 3-4 (a) A member of  𝑈𝑚𝑖𝑛 , (b) A member of  𝑈𝑚𝑎𝑥  
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Figure 3-5 The structure of uninorms on bounded lattices 

Theorem 3.4: ([50])   

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑒 ∈ 𝐿\{⊥, ⊤}. If 𝑇𝑒 is  

a t-norm on [⊥, 𝑒]2 and 𝑆𝑒 is a t-conorm on [𝑒, ⊤]2, then the functions 

𝑈𝑇1: 𝐿
2 → 𝐿 and 𝑈𝑆1: 𝐿

2 → 𝐿 defined as follow 

𝑈𝑇1(𝑥, 𝑦) =

{
 
 

 
 
𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒]2,

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒] × (𝑒, ⊤] ∪ (𝑒, ⊤] × [⊥, 𝑒],

𝑦 𝑖𝑓 𝑥 ∈ [⊥, 𝑒], 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈ [⊥, 𝑒], 𝑥 ∥ 𝑒,
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (3.9) 

and 

𝑈𝑆1(𝑥, 𝑦) =

{
 
 

 
 
𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑒, ⊤]2,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒) × [𝑒, ⊤] ∪ [𝑒, ⊤] × [⊥, 𝑒),

𝑦 𝑖𝑓 𝑥 ∈ [𝑒, ⊤], 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈ [𝑒, ⊤], 𝑥 ∥ 𝑒,
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (3.10) 

are uninorms on 𝐿 with neutral element 𝑒. 

Another two construction methods have been introduced in [11] that 

are different from the proposal given in [50]. We recall these 

constructions in Theorem 3.5. 
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Theorem 3.5: ([11])   

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑒 ∈ 𝐿\{⊥, ⊤}. If 𝑇𝑒 is  

a t-norm on [⊥, 𝑒]2 and 𝑆𝑒 is a t-conorm on [𝑒, ⊤]2, then the functions 

𝑈𝑇2: 𝐿
2 → 𝐿 and 𝑈𝑆2: 𝐿

2 → 𝐿 defined as  

𝑈𝑇2(𝑥, 𝑦) =

{
 

 
𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒]2,

𝑦 𝑖𝑓 𝑥 ∈ [⊥, 𝑒], 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈ [⊥, 𝑒], 𝑥 ∥ 𝑒,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                       (3.11) 

and 

𝑈𝑆2(𝑥, 𝑦) =

{
 

 
𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑒, ⊤]2,

𝑦 𝑖𝑓 𝑥 ∈ [𝑒, ⊤], 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈ [𝑒, ⊤], 𝑥 ∥ 𝑒,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                      (3.12) 

are uninorms on 𝐿 with neutral element 𝑒. 

Remark 3.5:  

Given a bounded lattice (𝐿, ≤, ⊥, ⊤), then 

i) The uninorms 𝑈𝑇1 and 𝑈𝑆1 cannot be used for constructing 

idempotent uninorms on 𝐿, such that, if we consider the only 

idempotent t-norm 𝑇𝑀
𝐿  on [⊥, 𝑒], then the corresponding 

uninorm 𝑈𝑇1 is not an idempotent uninorm having value ⊤ on 

the domain  (𝐿\[⊥, 𝑒]2). The case of 𝑈𝑆1  is similar. However, 

the uninorms 𝑈𝑇2 and 𝑈𝑆2 can be applied to show the existence 

of idempotent uninorms on 𝐿 for any 𝑒 ∈ 𝐿\{⊥, ⊤}. 

ii) The uninorms 𝑈𝑇2 and 𝑈𝑆2 in Theorem 3.5 can be equivalently 

defined by 

𝑈𝑇2(𝑥, 𝑦) = {
𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒]2,

𝐻(𝑥) ∨ 𝐻(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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𝑈𝑆2(𝑥, 𝑦) = {
𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑒, ⊤]2,

𝑀(𝑥) ∧ 𝑀(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

where 𝐻,𝑀: 𝐿 → 𝐿 are mappings given by 

𝐻(𝑥) = {
⊥ 𝑖𝑓 𝑥 ∈ [⊥, 𝑒],
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑀(𝑥) = {
⊤ 𝑖𝑓 𝑥 ∈ [𝑒, ⊤],
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Example 3.7:  

Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-6.  Let  

𝑇𝑒 = 𝑇𝐷
[⊥,𝑒]

 on [⊥, 𝑒] and 𝑆𝑒 = 𝑆𝐷
[𝑒,⊤]

 on [𝑒, ⊤]. Then the operations 

𝑈𝑇1 , 𝑈𝑆1 , 𝑈𝑇2and 𝑈𝑆2 whose values are written in Tables 3-8, 3-9, 3-10 

and 3-11, respectively, are uninorms on 𝐿 which are constructed using 

Equations (3.9), (3.10), (3.11) and (3.12), respectively. 

 

Figure 3-6 The lattice 𝐿 of Example 3.7 
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In [14], another two construction methods yielding uninorms on 

bounded lattices have been presented but with some additional 

constraints on the neutral element 𝑒 ∈ 𝐿\{⊥, ⊤} as we can see in 

Theorem 3.6 

Theorem 3.6: ([14])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and fix 𝑒 ∈ 𝐿\{⊥, ⊤}. Suppose that  

𝑥 ∨ 𝑦 > 𝑒 for all 𝑥 ∥ 𝑒 and 𝑦 ∥ 𝑒 or 𝑥 ∨ 𝑦 ∥ 𝑒 for all 𝑥 ∥ 𝑒 and 𝑦 ∥ 𝑒. 

If 𝑇𝑒 is a t-norm on [⊥, 𝑒], then the function 𝑈𝑇3: 𝐿
2 → 𝐿 defined as 

Table 3-8 The uninorm 𝑈𝑇1 on 𝐿 

of Example 3.7 

𝑈𝑇1  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ 𝑏 𝑐 𝑑 ⊥ ⊤ 

𝑎 ⊥ ⊥ 𝑏 𝑐 𝑑 𝑎 ⊤ 

𝑏 𝑏 𝑏 ⊤ ⊤ ⊤ 𝑏 ⊤ 

𝑐 𝑐 𝑐 ⊤ ⊤ ⊤ 𝑐 ⊤ 

𝑑 𝑑 𝑑 ⊤ ⊤ ⊤ 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 

 

Table 3-9 The uninorm 𝑈𝑆1on 𝐿 

of Example 3.7 

𝑈𝑆1  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑎 ⊥ ⊥ ⊥ ⊥ 𝑎 𝑎 𝑎 
𝑏 ⊥ ⊥ ⊥ ⊥ 𝑏 𝑏 𝑏 
𝑐 ⊥ ⊥ ⊥ ⊥ 𝑐 𝑐 𝑐 
𝑑 ⊥ 𝑎 𝑏 𝑐 ⊤ 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊥ 𝑎 𝑏 𝑐 ⊤ ⊤ ⊤ 
 

Table 3-10 The uninorm 𝑈𝑇2 on 

𝐿 of Example 3.7 

𝑈𝑇2  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ 𝑏 𝑐 𝑑 ⊥ ⊤ 

𝑎 ⊥ ⊥ 𝑏 𝑐 𝑑 𝑎 ⊤ 

𝑏 𝑏 𝑏 𝑏 𝑑 𝑑 𝑏 ⊤ 

𝑐 𝑐 𝑐 𝑑 𝑐 𝑑 𝑐 ⊤ 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 

 

Table 3-11 The uninorm 𝑈𝑆2 on 

𝐿 of Example 3.7 

𝑈𝑆2  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑎 ⊥ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 ⊥ 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 
𝑐 ⊥ 𝑎 𝑎 𝑐 𝑐 𝑐 𝑐 
𝑑 ⊥ 𝑎 𝑏 𝑐 ⊤ 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊥ 𝑎 𝑏 𝑐 ⊤ ⊤ ⊤ 
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𝑈𝑇3(𝑥, 𝑦) =

{
 
 

 
 
𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒]2,

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐴(𝑒) ∪ 𝑁𝑒 ×𝑁𝑒 ,

𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑒] × 𝑁𝑒 ,

𝑥 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁𝑒 × [⊥, 𝑒],
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

           (3.13) 

is a uninorm on 𝐿 with neutral element 𝑒, where 

𝐴(𝑒) = [⊥, 𝑒] × [𝑒, ⊤] ∪ [𝑒, ⊤] × [⊥, 𝑒],   𝑁𝑒 = {𝑥 ∈ 𝐿|𝑥 ∥ 𝑒} 

 

Theorem 3.7: ([14])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and fix 𝑒 ∈ 𝐿\{⊥, ⊤}. Suppose that  

𝑥 ∧ 𝑦 < 𝑒 for all 𝑥 ∥ 𝑒 and 𝑦 ∥ 𝑒 or 𝑥 ∧ 𝑦 ∥ 𝑒 for all 𝑥 ∥ 𝑒 and 𝑦 ∥ 𝑒. 

If 𝑆𝑒 is a t-conorm on [𝑒, ⊤], then the function 𝑈𝑆3: 𝐿
2 → 𝐿 defined as 

𝑈𝑆3(𝑥, 𝑦) =

{
 
 

 
 
𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑒, ⊤]2,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐴(𝑒) ∪ 𝑁𝑒 ×𝑁𝑒 ,

𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑒, ⊤] × 𝑁𝑒 ,

𝑥 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑁𝑒 × [𝑒, ⊤],
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

            (3.14) 

is a uninorm on 𝐿 with neutral element 𝑒, where 𝐴(𝑒) and 𝑁𝑒 are as 

described in Theorem 3.6. 

Example 3.8:  

i) The bounded lattice 𝐿 in Figure 3-6 is a positive example 

satisfying constraints of Theorems 3.6 and 3.7, since  

𝑏 ∨ 𝑐 = 𝑑 > 𝑒 for 𝑏 ∥ 𝑒 and 𝑐 ∥ 𝑒. 

ii) The bounded lattice 𝐿 in Figure 3-7 is a negative example of 

Theorem 3.6, where, for a chosen neutral element 𝑒, constraints 

of Theorem 3.6 are violated such that 𝑥 ∨ 𝑧 = 𝑘 > 𝑒 for 𝑥 ∥ 𝑒 

and 𝑧 ∥ 𝑒 while, 𝑦 ∨ 𝑚 = 𝑚 ∥ 𝑒 for 𝑦 ∥ 𝑒 and 𝑚 ∥ 𝑒. 
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Figure 3-7 The lattice 𝐿 of Example 3.8 (ii) 

iii) Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-6 and let  

𝑇𝑒 = 𝑇𝐷
[⊥,𝑒]

 on [⊥, 𝑒] and 𝑆𝑒 = 𝑆𝐷
[𝑒,⊤]

 on [𝑒, ⊤]. Then the 

operations 𝑈𝑇3 and 𝑈𝑆3 whose values are written in Tables 3-12 

and 3-13, respectively, are uninorms on 𝐿 which are 

constructed using Equations (3.13) and (3.14), respectively.  

 

Table 3-12 The uninorm 𝑈𝑇3 on 

𝐿 of Example 3.8 (iii) 

𝑈𝑇3  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ 𝑏 𝑐 𝑑 ⊥ ⊤ 

𝑎 ⊥ ⊥ 𝑏 𝑐 𝑑 𝑎 ⊤ 

𝑏 𝑏 𝑏 ⊤ 𝑑 ⊤ 𝑏 ⊤ 

𝑐 𝑐 𝑐 𝑑 ⊤ ⊤ 𝑐 ⊤ 

𝑑 𝑑 𝑑 ⊤ ⊤ ⊤ 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 
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3.4 Nullnorms 
 

3.4.1 Basic definitions and properties 
 

Nullnorms on the unit interval with zero element 𝑎 ∈ [0,1] are other 

associative aggregation functions that generalize both t-norms and  

t-conorms with the opposite behavior of uninorm, such that, they are 

acting as t-conorms on [0, 𝑎]2 and as t-norms on [𝑎, 1]2. These 

operators have been firstly introduced on the unit interval in [54] and 

[9]. In the literature, there are some other papers about nullnorms on 

the real unit interval, for example, [25, 26, 55, 70]. 

These operators have been introduced on bounded lattices in [48], 

showing the existence of nullnorms on bounded lattices with zero 

element 𝑎 ∈ 𝐿\{⊥, ⊤} using the fact that some t-norms and t-conorms 

on an arbitrary bounded lattice 𝐿 always exist. 

Our interest in the construction of these operations requires us to 

mention that there were several methods for constructing nullnorms on 

bounded lattices introduced in [12, 13, 16, 35, 45, 48]. We will recall 

Table 3-13 The uninorm 𝑈𝑆3 on 

𝐿 of Example 3.8 (iii) 

𝑈𝑆3  ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
𝑎 ⊥ ⊥ ⊥ ⊥ 𝑎 𝑎 𝑎 
𝑏 ⊥ ⊥ ⊥ 𝑎 𝑏 𝑏 𝑏 
𝑐 ⊥ ⊥ 𝑎 ⊥ 𝑐 𝑐 𝑐 
𝑑 ⊥ 𝑎 𝑏 𝑐 ⊤ 𝑑 ⊤ 

𝑒 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊤ ⊥ 𝑎 𝑏 𝑐 ⊤ ⊤ ⊤ 
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all of these constructions after some concepts concerning nullnorms on 

bounded lattices. 

Definition 3.9: ([48])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice. A commutative, associative,  

non-decreasing in each argument function 𝑉: 𝐿2 → 𝐿 is called  

a nullnorm if there is an element 𝑎 ∈ 𝐿 such that 𝑉(𝑥, ⊥) = 𝑥 for all 

𝑥 ≤ 𝑎 and 𝑉(𝑥, ⊤) = 𝑥 for all 𝑥 ≥ 𝑎. 

It can be easily derived that 𝑉(𝑥, 𝑎) = 𝑎 for all 𝑥 ∈ 𝐿. Thus, 𝑎 is the 

zero element of 𝑉. 

Proposition 3.3: ([48])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, 𝑎 ∈ 𝐿\{⊥, ⊤} and 𝑉 a nullnorm 

on 𝐿 with zero element 𝑎. Then  

i) 𝑆𝑉 = 𝑉|[⊥,𝑎]2: [⊥, 𝑎]
2 → [⊥, 𝑎] is a t-conorm on [⊥, 𝑎]. 

ii) 𝑇𝑉 = 𝑉|[𝑎,⊤]2: [𝑎, ⊤]
2 → [𝑎, ⊤] is a t-norm on [𝑎, ⊤]. 

Proposition 3.4: ([48])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, 𝑎 ∈ 𝐿\{⊥, ⊤} and 𝑉 a nullnorm 

on 𝐿 with zero element 𝑎. Then the following hold  

i) 𝑉(𝑥, 𝑦) = 𝑎 ∀(𝑥, 𝑦) ∈ [⊥, 𝑎] × [𝑎, ⊤] ∪ [𝑎, ⊤] × [⊥, 𝑎]. 

ii) 𝑎 ≤ 𝑉(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ [𝑎, ⊤]2 ∪ [𝑎, ⊤] × 𝑁𝑎 ∪ 𝑁𝑎 × [𝑎, ⊤]. 

iii) 𝑉(𝑥, 𝑦) ≤ 𝑎 ∀(𝑥, 𝑦) ∈ [⊥, 𝑎]2 ∪ [⊥, 𝑎] × 𝑁𝑎 ∪ 𝑁𝑎 × [⊥, 𝑎]. 

iv) 𝑉(𝑥, 𝑦) ≤ 𝑦 ∀(𝑥, 𝑦) ∈ 𝐿 × [𝑎, ⊤]. 

v) 𝑉(𝑥, 𝑦) ≤ 𝑥 ∀(𝑥, 𝑦) ∈ [𝑎, ⊤] × 𝐿. 

vi) 𝑥 ≤ 𝑉(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ [⊥, 𝑎] × 𝐿. 

vii) 𝑦 ≤ 𝑉(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐿 × [⊥, 𝑎]. 

viii) 𝑥 ∨ 𝑦 ≤ 𝑉(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ [⊥, 𝑎]2. 
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ix) 𝑉(𝑥, 𝑦) ≤ 𝑥 ∧ 𝑦 ∀(𝑥, 𝑦) ∈ [𝑎, ⊤]2. 

x) (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ≤ 𝑉(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ [⊥, 𝑎] × 𝑁𝑎 ∪ 𝑁𝑎 × [⊥

, 𝑎] ∪ 𝑁𝑎 × 𝑁𝑎. 

xi) 𝑉(𝑥, 𝑦) ≤ (𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) ∀(𝑥, 𝑦) ∈ [𝑎, ⊤] × 𝑁𝑎 ∪ 𝑁𝑎 ×

[𝑎, ⊤] ∪ 𝑁𝑎 × 𝑁𝑎. 
 

3.4.2 Construction methods 

 

Figure 3-8 show that a nullnorm with zero element 𝑎 on the unit 

interval is acting as t-conorm on [0, 𝑎]2 and t-norm on [𝑎, 1]2 while on 

the remaining parts of the unit square, nullnorms return as the output 

the zero element 𝑎. It means that, for any t-norm 𝑇 and any t-conorm 

𝑆 on [0,1] we can obtain a unique nullnorm 𝑉 (which is false in the 

uninorm case) with zero element 𝑎 ∈ [0,1]. 

In the case of a bounded lattice (𝐿, ≤, ⊥, ⊤), there may exist one or 

more elements incomparable with the zero element 𝑎 ∈ 𝐿 and hence 

the structure of nullnorms on bounded lattices is different from the 

given ones on the unit interval (see Figure 3-9). There exist many 

attempts for constructing nullnorms on bounded lattices and we use the 

following theorems to recall all of these constructions. We start by 

three constructions given in [48].  
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Figure 3-8 The structure of nullnorms on [0,1] 

 

Figure 3-9 The structure of nullnorms on bounded lattices 

Theorem 3.8: ([48])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎 ∈ 𝐿\{⊥, ⊤}, 𝑆 be  

a t-conorm on [⊥, 𝑎], 𝑇 be a t-norm on [𝑎, ⊤]. Then, the functions 

𝑉𝑆, 𝑉𝑇: 𝐿
2 → 𝐿 defined as follows: 

𝑉𝑆(𝑥, 𝑦) =

{
 

 
𝑆(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑎 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤[2∪ [𝑎, ⊤] × 𝑁𝑎 ∪ 𝑁𝑎 × [𝑎, ⊤] ∪ 𝐷𝑎 ,

𝑆(𝑥 ∧ 𝑎, 𝑦 ∧ 𝑎) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎] × 𝑁𝑎 ∪ 𝑁𝑎 × [⊥, 𝑎] ∪ 𝑁𝑎 × 𝑁𝑎,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3.15) 
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𝑉𝑇(𝑥, 𝑦) =

{
 

 
𝑇(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑎 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎[2∪ [⊥, 𝑎] × 𝑁𝑎 ∪ 𝑁𝑎 × [⊥, 𝑎] ∪ 𝐷𝑎,

𝑇(𝑥 ∨ 𝑎, 𝑦 ∨ 𝑎) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤] × 𝑁𝑎 ∪ 𝑁𝑎 × [𝑎, ⊤] ∪ 𝑁𝑎 × 𝑁𝑎,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3.16) 

are nullnorms on 𝐿 with zero element 𝑎, where,  

𝐷𝑎 = [⊥, 𝑎[×]𝑎, ⊤] ∪]𝑎, ⊤] × [⊥, 𝑎[,  𝑁𝑎 = {𝑥 ∈ 𝐿|𝑥 ∥ 𝑎}. 

Proposition 3.5: ([48])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎 ∈ 𝐿\{⊥, ⊤}, 𝑆 be  

a t-conorm on [⊥, 𝑎], 𝑇 be a t-norm on [𝑎, ⊤]. Then the function 

𝑉(𝑇,𝑆): 𝐿
2 → 𝐿 defined as follow: 

𝑉(𝑇,𝑆)(𝑥, 𝑦) = {
𝑆(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑇(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,
𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                      (3.17) 

is a nullnorm on 𝐿 with zero element 𝑎. 

Another two constructions for nullnorms on bounded lattices were 

presented in [35] as follows: 

Theorem 3.9: ([35])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice, and let 𝑎 ∈ 𝐿\{⊥, ⊤}, 𝑆 be  

a t-conorm on [⊥, 𝑎], 𝑇 be a t-norm on [𝑎, ⊤]. Then, the functions  

𝑉𝑇
𝑆, 𝑉𝑆

𝑇: 𝐿2 → 𝐿 defined as follows: 

𝑉𝑇
𝑆(𝑥, 𝑦) = {

𝑆(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑇(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑆(𝑥 ∧ 𝑎, 𝑦 ∧ 𝑎) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎] × 𝑁𝑎 ∪ 𝑁𝑎 × [⊥, 𝑎] ∪ 𝑁𝑎 × 𝑁𝑎,
𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3.18) 
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𝑉𝑆
𝑇(𝑥, 𝑦) = {

𝑆(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑇(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑇(𝑥 ∨ 𝑎, 𝑦 ∨ 𝑎) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤] × 𝑁𝑎 ∪ 𝑁𝑎 × [𝑎, ⊤] ∪ 𝑁𝑎 × 𝑁𝑎,
𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3.19) 

are nullnorms on 𝐿 with zero element 𝑎. 

Example 3.9:  

Consider the bounded lattice (𝐿, ≤, ⊥, ⊤) in Figure 3-10. Let  

𝑇[𝑎,⊤] = 𝑇𝐷
[𝑎,⊤]

 and 𝑆[⊥,𝑎] = 𝑆𝐷
[⊥,𝑎]

. Then the functions 𝑉𝑆, 𝑉𝑇 , 𝑉(𝑇,𝑆), 𝑉𝑇
𝑆 

and 𝑉𝑆
𝑇 whose values are written in Tables 3-14, 3-15, 3-16, 3-17 and 

3-18 are nullnorms on 𝐿 with zero element 𝑎. They are constructed 

using Equations (3.15), (3.16), (3.17), (3.18) and (3.19), respectively.   

 

Figure 3-10 The lattice 𝐿 of Example 3.9 
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Table 3-18 The nullnorm 𝑉𝑆
𝑇 on 𝐿 of Example 3.9 

𝑉𝑆
𝑇 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 
⊥ ⊥ 𝑎 𝑏 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 
𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 
⊤ 𝑎 𝑎 𝑎 𝑎 𝑑 𝑒 ⊤ 

 

Table 3-14 The nullnorm 𝑉𝑆 

on 𝐿 of Example 3.9 

𝑉𝑆 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 
⊥ ⊥ 𝑎 𝑏 𝑏 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 
𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 
⊤ 𝑎 𝑎 𝑎 𝑎 𝑑 𝑒 ⊤ 

 

Table 3-15 The nullnorm 𝑉𝑇 on 

𝐿 of Example 3.9 

𝑉𝑇 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 
⊥ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 
𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 
𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 
⊤ 𝑎 𝑎 𝑎 𝑑 𝑑 𝑒 ⊤ 

 

Table 3-16 The nullnorm 𝑉(𝑇,𝑆) 

on 𝐿 of Example 3.9 

𝑉(𝑇,𝑆) ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ 𝑎 𝑏 𝑎 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 

⊤ 𝑎 𝑎 𝑎 𝑎 𝑑 𝑒 ⊤ 

 

Table 3-17 The nullnorm 𝑉𝑇
𝑆 

on 𝐿 of Example 3.9 

𝑉𝑇
𝑆 ⊥ 𝑎 𝑏 𝑐 𝑑 𝑒 ⊤ 

⊥ ⊥ 𝑎 𝑏 𝑏 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑐 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 

⊤ 𝑎 𝑎 𝑎 𝑎 𝑑 𝑒 ⊤ 
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On the other hand, the construction of idempotent nullnorms on 

bounded lattices have also attracted much attention from authors [12, 

13, 16] . Note that, all construction methods introduced in Theorem 3.8 

and Theorem 3.9 for nullnorms on bounded lattices are not suitable for 

obtaining idempotent nullnorms on bounded lattices. However, 𝑉(𝑇,𝑆) 

introduced in Proposition 3.5 can be used to construct idempotent 

nullnorms on bounded lattices, if and only if, all elements of 𝐿 are 

comparable with the zero element 𝑎. Consequently,  𝑉(𝑇,𝑆) is reduced 

to  

𝑉(𝑇,𝑆)(𝑥, 𝑦) = {

𝑆(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑇(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑎 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎] × [𝑎, ⊤] ∪ [𝑎, ⊤] × [⊥, 𝑎].

 

Hence, if we put 𝑆 = 𝑆𝑀
𝐿  and 𝑇 = 𝑇𝑀

𝐿  in the previous formula, we 

obtain the following idempotent nullnorm on 𝐿: 

𝑉(𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑎 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎] × [𝑎, ⊤] ∪ [𝑎, ⊤] × [⊥, 𝑎].

 

Moreover, in [13, 16], a characterization of idempotent nullnorms on 

bounded lattices such that there is only one element in 𝐿 incomparable 

with the zero element 𝑎 has been introduced as follows: 

Theorem 3.10: ([13, 16])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and let 𝑎 ∈ 𝐿\{⊥, ⊤} and suppose 

there is only one element 𝑚 in 𝐿 incomparable with 𝑎. Then the 

following function 𝑉𝐼: 𝐿
2 → 𝐿 is an idempotent nullnorm with zero 

element 𝑎. 
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𝑉𝐼(𝑥, 𝑦) =

{
 
 
 
 

 
 
 
 
𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎]2,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦) ∈ [𝑎, ⊤]2,

𝑎 𝑖𝑓 (𝑥, 𝑦) ∈ [⊥, 𝑎] × [𝑎, ⊤] ∪ [𝑎, ⊤] × [⊥, 𝑎],

𝑥 ∨ (𝑚 ∧ 𝑎) 𝑖𝑓 𝑥 ∈ [⊥, 𝑎] 𝑎𝑛𝑑 𝑦 = 𝑚,

𝑦 ∨ (𝑚 ∧ 𝑎) 𝑖𝑓 𝑥 = 𝑚 𝑎𝑛𝑑 𝑦 ∈ [⊥, 𝑎],

𝑥 ∧ (𝑚 ∨ 𝑎) 𝑖𝑓 𝑥 ∈ [𝑎, ⊤] 𝑎𝑛𝑑 𝑦 = 𝑚,

𝑦 ∧ (𝑚 ∨ 𝑎) 𝑖𝑓 𝑥 = 𝑚 𝑎𝑛𝑑 𝑦 ∈ [𝑎, ⊤],
𝑚 𝑖𝑓 𝑥 = 𝑦 = 𝑚.

 

(3.20) 

Example 3.10:  

Consider the bounded lattice (𝐿, ≤ ,0,1) in Figure 3-11. The function 

𝑉𝐼 in Table 3-19 is an idempotent nullnorm on 𝐿 with zero element 𝑎. 

It is constructed using Equation (3.20). 

 

 

 

 

 

Figure 3-11 The lattice 𝐿 

of Example 3.10 

 

Table 3-19 The idempotent 

nullnorm 𝑉𝐼 on 𝐿 of Example 

3.10 

𝑉𝐼 0 𝑥 𝑦 𝑎 𝑧 𝑡 1 
0 0 𝑥 𝑦 𝑎 0 𝑎 𝑎 
𝑥 𝑥 𝑥 𝑦 𝑎 𝑥 𝑎 𝑎 
𝑦 𝑦 𝑦 𝑦 𝑎 𝑦 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑧 0 𝑥 𝑦 𝑎 𝑧 𝑡 𝑡 
𝑡 𝑎 𝑎 𝑎 𝑎 𝑡 𝑡 𝑡 
1 𝑎 𝑎 𝑎 𝑎 𝑡 𝑡 1 
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Remark 3.6:  

It is worth mentioning that; the ordinal sum approach has been also 

introduced for copulas [61, 62] and for general algebraic structures in 

[6, 8]. 

As we have seen, the ordinal sum construction method have long been 

blamed for their limitations in constructing new associative 

aggregation operator for its inability to cope with a general bounded 

lattice. Therefore, we aim in the next chapters to present construction 

methods for t-norms, t-conorms, uninorms and nullnorms on bounded 

lattices based on the lattice-based sum approach.  
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4 Chapter four  

Lattice-based sum construction of nullnorms on bounded 

lattices 

4.1 Introduction 
 

In this chapter, we develop new construction methods for building 

nullnorms on bounded lattices based on the lattice-based sum of bounded 

lattices just described in chapter two. Note that, as we have explained in 

chapter two, we restrict our consideration to the finite lattice-ordered 

index set where each summand of the associated family is a bounded 

lattice. In this case, the zero element of the nullnorm may be equal to one 

of the boundaries of some summand or inside some summand. Therefore, 

we restrict our consideration about the location of the zero element to be 

one of the boundaries of some summand. We will illustrate what will 

happen if the zero element is inside some summand. In addition, we give 

a new construction method for idempotent nullnorms on bounded lattices 

with zero element 𝑎 to be an arbitrary point of the underlying lattice 

without any restrictions on the zero element 𝑎 or on the underlying 

bounded lattice 𝐿. In the literature, for the nullnorm 𝑉 on a bounded lattice 

𝐿 to be idempotent, we need the underlying bounded lattice 𝐿 to be 

distributive or there exists only one element on 𝐿 incomparable with 𝑎. 

By our construction methods obtained in this chapter, we can also obtain 

t-norms and t-conorms from a given family of t-norms and t-conorms 

on 𝐿, just by controlling the location of the zero element 𝑎.   
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Definition 4.1: ([19])  

Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice and 𝑎 ∈ 𝐿. The downset of 𝑎 denoted 

↓ 𝑎 and the upset of 𝑎 denoted ↑ 𝑎 are given by ↓ 𝑎 = {𝑥 ∈ 𝐿|𝑥 ≤ 𝑎}, 

↑ 𝑎 = {𝑥 ∈ 𝐿|𝑥 ≥ 𝑎} 

4.2 Construction of nullnorms on bounded lattices 

 

Remark 4.1:  

Under the consideration of finite lattice-ordered index set where each 

summand of the associated family is a bounded lattice, we have for some 

finite lattice-ordered index set (Λ,⊑) and for some 𝛼 ∈ Λ, for any t-norm 

𝑇𝛼 and any t-conorm 𝑆𝛼 on 𝐿𝛼, 

𝑇𝛼(𝑥, 𝑦) = 𝑥 ∧ 𝑦 and  𝑆𝛼(𝑥, 𝑦) = 𝑥 ∨ 𝑦 

when 𝑥 or 𝑦 is equal to one of the boundaries of 𝐿𝛼. 

Lemma 4.1: ([31])  

Let (Λ,⊑) be a finite lattice-ordered index set and let  

𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) be a lattice-based sum of bounded lattices. 

Assume that there exist 𝑥1, 𝑥2 ∈ 𝐿 such that there is no 𝛼 ∈ Λ such that 

{𝑥1, 𝑥2} ⊆ 𝐿𝛼 

i) If 𝑥1 < 𝑥2, then there exist  𝛼1, 𝛼2 ∈ Λ such that  

(𝑥1, 𝑥2) ∈ 𝐿𝛼1 × 𝐿𝛼2 with 𝛼1 ⊏ 𝛼2 and for all 𝑧1 ∈ 𝐿𝛼1 

and for all 𝑧2 ∈ 𝐿𝛼2 we have 𝑧1 ≤ 𝑧2. 

ii) If 𝑥1 ∥ 𝑥2, then for all 𝛼1 ∈ 𝐼𝑥1 and 𝛼2 ∈ 𝐼𝑥2 we have   

𝛼1 ∥ 𝛼2 and for all 𝑧1 ∈ 𝐿𝛼1\{⊥𝛼1 , ⊤𝛼1} and for all  

𝑧2 ∈ 𝐿𝛼2\{⊥𝛼2 , ⊤𝛼2}  we have 𝑧1 ∥ 𝑧2. 

Lemma 4.1 is a direct consequence from Definition 2.14 and Theorem 

2.2. 



56 

 

Example 4.1:  

Consider the Λ-sum family of bounded lattices in Figure 2.7. It is clear 

that, for all 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽 we have 𝑥 ≤ 𝑦 (since 𝛼 ⊏ 𝛽). Further, for 

all 𝑎 ∈ 𝐿𝛽\{⊥𝛽 , ⊤𝛽} and 𝑏 ∈ 𝐿𝛾\{⊥𝛾, ⊤𝛾} we have 𝑎 ∥ 𝑏 (since 𝛽 ∥ 𝛾). 

Theorem 4.1:  

Consider a finite lattice-ordered index set (Λ,⊑) and let 

𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) be a lattice-based sum of bounded lattices. 

Let 𝑎 ∈ 𝐿 with 𝑎 ∈ {⊥𝛼, ⊤𝛼} for some 𝛼 ∈ Λ and (𝑇𝛼)𝛼∈Λ ((𝑆𝛼)𝛼∈Λ) be  

a family of t-norms (t-conorms) on the corresponding 

summands (𝐿𝛼)𝛼∈Λ. Then the functions 𝑉∨: 𝐿
2 → 𝐿 and 𝑉∧: 𝐿

2 → 𝐿 

defined as follow 

𝑉∨(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (4.1) 

and 

𝑉∧(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    (4.2) 

are nullnorms on 𝐿2 with zero element 𝑎. 

Proof:  

The proof runs only for the operation 𝑉∨. The operation 𝑉∧ has a similar 

proof. 

First, we note that, for all 𝑥, 𝑦 ∈ 𝐿 with 𝑥, 𝑦 ∈↓ 𝑎 and there is no 𝛼 ∈ Λ 

such that {𝑥, 𝑦} ⊆ 𝐿𝛼 then we have 𝑉∨(𝑥, 𝑦) = (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) = 

𝑥 ∨ 𝑦. Also for all 𝑥 ∈↑ 𝑎 and for 𝑦 ∥ 𝑎 or 𝑦 ∈↓ 𝑎, we have:  
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𝑉∨(𝑥, 𝑦) = (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) = 𝑎 ∨ (𝑦 ∧ 𝑎) = 𝑎. Therefore, by 

absorption, we will use this abbreviation without mention.  

It is necessary to check that the operation 𝑉∨ is well-defined. A problem 

can only arise if (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 with 𝑥 ∈ 𝐿𝛼 ∩ 𝐿𝛽 for some 𝛼, 𝛽 ∈ Λ 

and we write,  

i. 𝑥, 𝑦 ∈↓ 𝑎,  

a) 𝛼 ⊏ 𝛽. In this case: 

𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑦 if we consider 

that 𝑥, 𝑦 ∈ 𝐿𝛽, and 𝑉∨(𝑥, 𝑦) = 𝑥 ∨ 𝑦 = 𝑦 if we consider 

that 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽. Thus getting the same result in 

both cases. 

b) 𝛼 ∥ 𝛽. In this case we have either 𝑥 = ⊤𝛼 = ⊤𝛽 and hence,  

𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑥 ∨ 𝑦 = 𝑥, or 𝑥 =⊥𝛼=⊥𝛽 

and hence, 𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑥 ∨ 𝑦 = 𝑦. 

ii. 𝑥, 𝑦 ∈↑ 𝑎. This case is dual to case (i) has a dual proof due to the 

duality between the t-norm and the t-conorm. 

Now, we need to prove that 𝑉∨ is a nullnorm on 𝐿 with zero 

element 𝑎. 

Commutativity: It is easy to see the commutativity of 𝑉∨ due to the 

commutativity of the t-norm and the t-conorm defined on each summand 

, ∧ and ∨ on 𝐿. 

Zero element: We prove that 𝑎 is the zero element of 𝑉∨. The proof is split 

into all the possible cases for some 𝑥 ∈ 𝐿, as follows: 

i. 𝑥 ∈↓ 𝑎, 
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a) There exists some 𝛼 ∈ Λ such that {𝑥, 𝑎} ⊆ 𝐿𝛼, then (from 

Remark 4.1) we have, 

𝑉∨(𝑥, 𝑎) = 𝑆𝛼(𝑥, 𝑎) = 𝑥 ∨𝛼 𝑎 = 𝑎 

b) There is no 𝛼 ∈ Λ such that {𝑥, 𝑎} ⊆ 𝐿𝛼, then,  

𝑉∨(𝑥, 𝑎) = 𝑥 ∨ 𝑎 = 𝑎 

ii. 𝑥 ∈↑ 𝑎. This case has a dual proof of case (i) due to the duality 

between the t-norm and the t-conorm. 

iii. 𝑥 ∥ 𝑎. Then directly from the definition of 𝑉∨ we have 

𝑉∨(𝑥, 𝑎) = 𝑎 

Monotonicity: We prove that if 𝑥 ≤ 𝑦 in 𝐿, then for all 𝑧 ∈ 𝐿,  

𝑉∨(𝑥, 𝑧) ≤ 𝑉∨(𝑦, 𝑧). The proof is split into all the possible cases, as 

follows: 

Case (1): Let 𝑥, 𝑦 ∈↓ 𝑎. Then we have the following subcases 

Subcase 1(a): 𝑧 ∈↓ 𝑎, 

i. There exist some 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼. If 𝑧 ∈ 𝐿𝛼, then 

monotonicity holds trivially due to the monotonicity of 𝑆𝛼 on 𝐿𝛼. 

If 𝑧 ∉ 𝐿𝛼, then  

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

ii. There is no 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼.  

a) If 𝑥 and 𝑧 are in the same summand, we observe it by 

considering {𝑥, 𝑧} ⊆ 𝐿𝛽 and 𝑦 ∈ 𝐿𝛿  with 𝛽 ≠ 𝛿 for 

some 𝛽, 𝛿 ∈ Λ, then from Lemma 4.1, we have either  

𝛽 ⊏ 𝛿 or 𝛽 ∥ 𝛿. If 𝛽 ⊏ 𝛿, then  

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) ≤ 𝑦 = 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

If 𝛽 ∥ 𝛿, then we have either 𝑥 ∈ {⊥𝛽 , ⊤𝛽} and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
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or 𝑥 ∈ 𝐿𝛽\{⊥𝛽 , ⊤𝛽}, then necessarily 𝑦 = ⊤𝛿 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) ≤ 𝑦 = 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

b) If 𝑦 and 𝑧 are in the same summand, we observe it by 

considering {𝑦, 𝑧} ⊆ 𝐿𝛼 and 𝑥 ∉ 𝐿𝛼 for some 𝛼 ∈ Λ. 

Therfore 

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 ≤ 𝑆𝛼(𝑦, 𝑧) = 𝑉∨(𝑦, 𝑧) 

iii. All arguments are in different summands,  

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

Subcase 1(b): 𝑧 ∈↑ 𝑎 ⟹ 𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

Subcase 1(c): 𝑧 ∥ 𝑎, then  

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) = 𝑉∨(𝑦, 𝑧) 

Case (2): Let 𝑥 ∈↑ 𝑎. Then 𝑦 ∈↑ 𝑎, and we have: 

i. 𝑧 ∈↓ 𝑎, then 𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎. In this case, the proof is a dual proof of Case (1) due to 

the duality between the t-norm and the t-conorm. 

iii. 𝑧 ∥ 𝑎, then 𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

Case (3): Let 𝑥 ∈↓ 𝑎, 𝑦 ∈↑ 𝑎. 

i. 𝑧 ∈↓ 𝑎. In this case we have either 𝑥 and 𝑧 are in the same 

summand or 𝑥 and 𝑧 are in different summands. In both cases and 

due to the t-conorm defined on each summand and ∨ on 𝐿 we have, 

𝑉∨(𝑥, 𝑧) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎. Similarly, as in case (i) we have 𝑉∨(𝑦, 𝑧) ≥ 𝑎 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑎 ≤ 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 
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Case (4): Let 𝑥 ∈↓ 𝑎, 𝑦 ∥ 𝑎. 

i. 𝑧 ∈↓ 𝑎, 

a) There exists some 𝛼 ∈ Λ such that {𝑥, 𝑧} ⊆ 𝐿𝛼. Then we 

have either 𝑦 ∧ 𝑎 ∈ 𝐿𝛼 or 𝑦 ∧ 𝑎 ∉ 𝐿𝛼. If 𝑦 ∧ 𝑎 ∈ 𝐿𝛼, then 

necessarily 𝑦 ∈ {⊥𝛼 , ⊤𝛼}. In case 𝑦 ∧ 𝑎 = ⊤𝛼, then  

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) ≤ ⊤𝛼 = 𝑦 ∧ 𝑎 = (𝑦 ∧ 𝑎) ∨ 𝑧

= 𝑉∨(𝑦, 𝑧) 

In case 𝑦 ∧ 𝑎 =⊥𝛼, then necessarily 𝑥 =⊥𝛼 and hence 

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) = 𝑥 ∨ 𝑧 = 𝑧 = (𝑦 ∧ 𝑎) ∨ 𝑧

= 𝑉∨(𝑦, 𝑧) 

If 𝑦 ∧ 𝑎 ∉ 𝐿𝛼, then 𝑦 ∧ 𝑎 > 𝑢 for all 𝑢 ∈ 𝐿𝛼 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) ≤ 𝑦 ∧ 𝑎 = (𝑦 ∧ 𝑎) ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

b) There is no 𝛼 ∈ Λ such that {𝑥, 𝑧} ⊆ 𝐿𝛼 , then 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)

= 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎, then 𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎. This case is similar to subcase 1(c) resulting in a similar 

proof. 

Case (5): Let 𝑥 ∥ 𝑎, 𝑦 ∈↑ 𝑎. 

i. 𝑧 ∈↓ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎. In similar way of Case 3(ii) we have 𝑉∨(𝑦, 𝑧) ≥ 𝑎 and 

hence, 

𝑉∨(𝑥, 𝑧) = 𝑎 ≤ 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 
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Case (6): Let 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎. 

i. 𝑧 ∈↓ 𝑎. This case is similar to Case 4(iii) has a similar proof. 

ii. 𝑧 ∈↑ 𝑎,then 𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) = 𝑉∨(𝑦, 𝑧) 

Associativity: We prove that 𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) for all  

𝑥, 𝑦, 𝑧 ∈ 𝐿. Again, the proof is split into all possible cases by considering 

the relationship between the arguments 𝑥, 𝑦, 𝑧 and 𝑎, as follows:  

Case (1): All arguments are from ↓ 𝑎. 

i. There exists some 𝛼 ∈ Λ such that {𝑥, 𝑦, 𝑧} ⊆ 𝐿𝛼. In this case 

associativity holds trivially due to the associativity of 𝑆𝛼 on 𝐿𝛼. 

ii. All arguments are from different summands, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (𝑥 ∨ 𝑦, 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 

= 𝑉∨ (𝑥, 𝑦 ∨ 𝑧) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

In this case, we must note that, if 𝑥 ∨ 𝑦 and 𝑧 are in the same 

summand, then necessarily 𝑥 ∨ 𝑦 is equal to one of the boundaries 

of this summand and hence (from Remark 4.1) we have  

𝑉∨ (𝑥 ∨ 𝑦, 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧. 

iii. Exactly two arguments are from the same summand. We observe 

it by considering the following cases. 

a) There exists some 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼 and 𝑧 ∉ 𝐿𝛼. 

If 𝑥 or 𝑦 is equal to one of the boundaries of 𝐿𝛼, then (from 

Remark 4.1) associativity holds trivially due to the 

associativity of ∨ on 𝐿. Therefore, we assume that  

𝑥, 𝑦 ∈ 𝐿𝛼\{⊥𝛼 , ⊤𝛼} and then we compare 𝑧 with 𝑥 and 𝑦, 

as follows: 
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If 𝑥 > 𝑧 or 𝑦 > 𝑧, then 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) = 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 

= 𝑆𝛼(𝑥, 𝑦) = 𝑆𝛼(𝑥, 𝑦 ∨ 𝑧) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  

If 𝑥 < 𝑧 or 𝑦 < 𝑧, then 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) = 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 

= 𝑧 = 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

= 𝑥 ∨ 𝑉∨(𝑦, 𝑧) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  

If 𝑥 ∥ 𝑧 or 𝑦 ∥ 𝑧, then 𝑥 ∨ 𝑧 = 𝑦 ∨ 𝑧 = 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 

and hence, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) = 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 

= 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

= 𝑥 ∨ 𝑉∨(𝑦, 𝑧) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  

b) There exist some 𝛽 ∈ Λ such that {𝑥, 𝑧} ⊆ 𝐿𝛽 and 𝑦 ∉ 𝐿𝛽. 

This case is similar to Case (a) resulting in similar proof. 

c) There exist some 𝛿 ∈ Λ such that {𝑦, 𝑧} ⊆ 𝐿𝛿 and 𝑥 ∉ 𝐿𝛿. 

This case is similar to Case (a) resulting similar proof. 

Case (2): All arguments are from ↑ 𝑎. This case has a dual proof of Case 

(1) due to the duality between t-norm and t-conorm. 

Case (3): All arguments are incomparable with 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

Case (4): Exactly two arguments are from ↓ 𝑎.  
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i. 𝑥, 𝑦 ∈↓ 𝑎, 𝑧 > 𝑎. In this case we have either 𝑥 and 𝑦 are in the 

same summand or 𝑥 and 𝑦 are from different summands. In both 

cases, we have  𝑉∨(𝑥, 𝑦) ≤ 𝑎 and hence, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

ii. 𝑥, 𝑦 ∈↓ 𝑎, 𝑧 ∥ 𝑎. Then from the fact that 𝑧 ∧ 𝑎 < 𝑎, the 

associativity holds by a proof exactly similar to Case (1) but with 

𝑥, 𝑦 ∈↓ 𝑎 and 𝑧 ∧ 𝑎 < 𝑎. 

iii. 𝑥, 𝑧 ∈↓ 𝑎, 𝑦 > 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

iv. 𝑥, 𝑧 ∈↓ 𝑎, 𝑦 ∥ 𝑎. This case is similar to Case 4(ii) resulting in 

similar proof. 

v. 𝑦, 𝑧 ∈↓ 𝑎, 𝑥 > 𝑎. This case is similar to Case 4(i) resulting in 

similar proof. 

vi. 𝑦, 𝑧 ∈↓ 𝑎, 𝑥 ∥ 𝑎. This case is similar to Case 4(ii) resulting in 

similar proof. 

Case (5): Exactly two arguments are from ↑ 𝑎. 

i. 𝑥, 𝑦 ∈↑ 𝑎, 𝑧 < 𝑎. In this case we have either 𝑥 and 𝑦 are in the 

same summand or 𝑥 and 𝑦 are in different summands. In both 

cases, we have 𝑉∨(𝑥, 𝑦) ≥ 𝑎 and hence 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

ii. 𝑥, 𝑦 ∈↑ 𝑎, 𝑧 ∥ 𝑎. This case is similar to Case 5(i) resulting in 

similar proof. 

iii. 𝑥, 𝑧 ∈↑ 𝑎, 𝑦 < 𝑎. 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

iv. 𝑥, 𝑧 ∈↑ 𝑎, 𝑦 ∥ 𝑎. This case is similar to Case 5(iii) resulting in 

similar proof. 
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v. 𝑦, 𝑧 ∈↑ 𝑎, 𝑥 < 𝑎. In this case we have either 𝑦 and 𝑧 are in the 

same summand or 𝑦 and 𝑧 are in different summands. In both 

cases, we have 𝑉∨(𝑦, 𝑧) ≥ 𝑎 and hence 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑥, 𝑎) = 𝑎 = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

vi. 𝑦, 𝑧 ∈↑ 𝑎, 𝑥 ∥ 𝑎. This case is similar to Case 5(v) resulting in 

similar proof. 

Case (6): Exactly two arguments are incomparable with 𝑎. 

i. 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↓ 𝑎.  

In this case we have 𝑥 ∧ 𝑎 < 𝑎 and 𝑦 ∧ 𝑎 < 𝑎 with 𝑥 ∧ 𝑎 and  

𝑦 ∧ 𝑎 are on the boundaries and hence (from Remark 4.1) we have 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

ii. 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↑ 𝑎. 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎)

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

iii. 𝑥 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑦 ∈↓ 𝑎. This case is similar to Case 6(i) resulting in 

similar proof. 

iv. 𝑥 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑦 ∈↑ 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

v. 𝑦 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑥 ∈↓ 𝑎. This case is similar to Case 6(i) resulting in 

similar proof. 

vi. 𝑦 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑥 ∈↑ 𝑎. This case is similar to Case 6(iv) resulting in 

similar proof. 

For other possibilities we distinguish the following cases 
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i. 𝑥 ∈↓ 𝑎, 𝑦 ∈↑ 𝑎, 𝑧 ∥ 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

ii. 𝑥 ∈↓ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↑ 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎)

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

iii. 𝑥 ∈↑ 𝑎, 𝑦 ∈↓ 𝑎, 𝑧 ∥ 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 = 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎))

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

iv. 𝑥 ∈↑ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ↓ 𝑎. This case is similar to Case (iii) resulting in 

similar proof. 

v. 𝑥 ∥ 𝑎, 𝑦 ↓ 𝑎, 𝑧 ∈↑ 𝑎. This case is similar to Case (ii) resulting in 

similar proof. 

vi. 𝑥 ∥ 𝑎, 𝑦 ↑ 𝑎, 𝑧 ↓ 𝑎. This case is similar to Case (i) resulting in 

similar proof. 

Example 4.2:  

Consider the lattice-ordered index set (Λ,⊑) and its lattice-based sum of 

bounded lattices 𝐿 of Example 2.3 with elements distribution shown in 

Figure 4-1. Define a drastic product t-norm 𝑇𝐷 on 𝐿𝛾 and a drastic sum  

t-conorm 𝑆𝐷 on 𝐿𝛼. Then the functions 𝑉∨ and 𝑉∧ whose values are written 

in Table 4-1 and Table 4-2 are nullnorms on 𝐿 with zero element 𝑎. They 

are constructed using Formulas (4.1) and (4.2), respectively. 
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Figure 4-1 The lattice 𝐿 of Example 4.2 

 

Table 4-1 The nullnorm 𝑉∨ on 𝐿 of Example 4.2 

𝑉∨ 0 𝑥 𝑦 𝑧 𝑡 𝑒 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 1 

0 0 𝑥 𝑦 𝑧 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑥 𝑦 𝑧 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑦 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑔 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 

𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑑 

1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 1 
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Table 4-2 The nullnorm 𝑉∧ on 𝐿 of Example 4.2 

𝑉∧ 0 𝑥 𝑦 𝑧 𝑡 𝑒 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 1 

0 0 𝑥 𝑦 𝑧 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑥 𝑦 𝑧 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑦 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑏 𝑐 𝑑 1 

𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑏 𝑐 𝑑 1 

𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑏 𝑐 𝑑 1 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑎 𝑎 𝑎 𝑏 𝑏 

𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 𝑐 𝑎 𝑎 𝑎 𝑐 𝑐 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑑 𝑑 𝑎 𝑏 𝑐 𝑑 𝑑 

1 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑏 𝑐 𝑑 1 

 

Corollary 4.1:  

Consider a finite lattice-ordered index set (Λ,⊑) and a lattice-based sum 

of bounded lattices 𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝐷
𝐿  and 

𝑇𝛼 = 𝑇𝐷
𝐿 for all 𝛼 ∈ Λ in 𝑉∨ and 𝑉∧ in Theorem 4.1, then we obtain the 

following nullnorms on 𝐿 with zero element 𝑎 ∈ 𝐿 

𝑉∨
𝐷(𝑥, 𝑦) =

{
 
 

 
 ⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑉∧
𝐷(𝑥, 𝑦) =

{
 
 

 
 ⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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4.3 Construction of idempotent nullnorms on bounded lattices 
 

Remark 4.2:  

Given a finite lattice-ordered index set (Λ,⊑) and a lattice-based sum of 

bounded lattices 𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼, ⊥𝛼, ⊤𝛼) and 𝑎 ∈ 𝐿\{⊥, ⊤}. The 

nullnorms 𝑉∨ and 𝑉∧ given in Theorem 4.1 may not work to construct 

idempotent nullnorms on 𝐿 for any zero element 𝑎 ∈ 𝐿, such that, for 

some 𝑥 ∈ 𝐿 with 𝑥 ∥ 𝑎 we have 

𝑉∨(𝑥, 𝑥) = 𝑥 ∧ 𝑎 ≠ 𝑥 and 𝑉∧(𝑥, 𝑥) = 𝑥 ∨ 𝑎 ≠ 𝑥 

Inspired by the last observation, we introduce the following theorem  

Theorem 4.2:  

Consider a finite lattice-ordered index set (Λ,⊑) and let  

𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) be a lattice-based sum of bounded lattices. 

Let 𝑎 ∈ 𝐿 with 𝑎 ∈ {⊥𝛼, ⊤𝛼} for some 𝛼 ∈ Λ and (𝑇𝛼)𝛼∈Λ ((𝑆𝛼)𝛼∈Λ) be a 

family of t-norms (t-conorms) on the corresponding summands (𝐿𝛼)𝛼∈Λ. 

Then the functions 𝑉∨
𝐼: 𝐿2 → 𝐿 and 𝑉∧

𝐼: 𝐿2 → 𝐿 defined as follow 

𝑉∨
𝐼(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼

(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(4.3) 

𝑉∧
𝐼(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼

(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(4.4) 

are nullnorms on 𝐿 with zero element 𝑎. 
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Proof:  

The proof runs only for the operation 𝑉∨
𝐼. The operation 𝑉∧

𝐼 has a similar 

proof. 

The commutativity, the monotonicity and the fact that 𝑎 is the zero 

element of 𝑉∨
𝐼 have exactly the same proof as the corresponding one from 

Theorem 4.1. It is only remaining to see the associativity of 𝑉∨
𝐼.  

Associativity: We prove that: 

𝑉∨
𝐼 (𝑉∨

𝐼(𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼(𝑥, 𝑉∨

𝐼(𝑦, 𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. 

Associativity of 𝑉∨
𝐼 is preserved in all cases by exactly the same proof of 

the corresponding cases from Theorem 4.1, but we investigate if at least 

two equal arguments are incomparable with 𝑎. Therefore, we assume that 

𝑥 = 𝑦 ∥ 𝑎 and distinguish the following cases 

Case (1): 𝑧 ∥ 𝑎 with 𝑧 ≠ 𝑥 (equivalent to 𝑧 ≠ 𝑦)  

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼 (𝑥 ∧ 𝑦, 𝑧) = 𝑉∨

𝐼 (𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) = 𝑉∨

𝐼 (𝑥, 𝑉∨
𝐼 (𝑦, 𝑧)) 

Case (2): 𝑧 ∈↓ 𝑎, 

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼 (𝑥 ∧ 𝑦, 𝑧) = 𝑉∨

𝐼 (𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) = 𝑉∨

𝐼 (𝑥, 𝑉∨
𝐼 (𝑦, 𝑧)) 

Case (3): 𝑧 ∈↑ 𝑎, 

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼 (𝑥 ∧ 𝑦, 𝑧) = 𝑉∨

𝐼 (𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑎 = 𝑉∨
𝐼 (𝑥, 𝑎) = 𝑉∨

𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ 𝑎) 

= 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) = 𝑉∨

𝐼 (𝑥, 𝑉∨
𝐼 (𝑦, 𝑧)) 

All other cases can be shown in a similar way. 
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Corollary 4.2:  

If we put 𝑇𝛼 = 𝑇𝑀
𝐿  and 𝑆𝛼 = 𝑆𝑀

𝐿  on 𝐿𝛼 for all 𝛼 ∈ Λ in 𝑉∨
𝐼 and 𝑉∧

𝐼 in 

Theorem 4.2, then the following functions are idempotent nullnorms on 𝐿. 

𝑉∨
𝐼 (𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦 ∈↑ 𝑎) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),
(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑉∧
𝐼 (𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦 ∈↓ 𝑎) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),
(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

          

Note that 𝑉∨
𝐼 and 𝑉∧

𝐼 just described in Corollary 4.2 are to be considered 

as a new constructions for idempotent nullnorms on bounded lattices 

without any restrictions on the zero element 𝑎 or on the underlying 

bounded lattice. 

Recall that, the nullnorm 𝑉(𝑇,𝑆) in Proposition 3.5 is an idempotent 

nullnorm on a bounded lattice 𝐿 if and only if the underling bounded 

lattice 𝐿 is a chain (i.e. all elements in 𝐿 are comparable with the zero 

element 𝑎). On the other hand, the nullnorm 𝑉𝐼 in Theorem 3.10 is 

idempotent nullnorm on a bounded lattice 𝐿 if and only if there is only 

one element in 𝐿 incomparable with 𝑎.      

Example 4.3:  

Consider the lattice-ordered index set (Λ,⊑) and its lattice-based sum of 

bounded lattices 𝐿 of Example 4.2. Let 𝑇𝛼 = 𝑇𝑀
𝐿  and 𝑆𝛼 = 𝑆𝑀

𝐿  on 𝐿𝛼 for 

all 𝛼 ∈ Λ. Then the functions 𝑉∨
𝐼 and 𝑉∧

𝐼 whose values are written in Table 

4-3 and Table 4-4 are idempotent nullnorms on 𝐿 with zero element 𝑎. 

They are constructed using Formulas (4.3) and (4.4), respectively. 
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Table 4-3 The idempotent nullnorms 𝑉∨
𝐼 on 𝐿 of Example 4.3 

𝑉∨
𝐼 0 𝑥 𝑦 𝑧 𝑡 𝑒 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 1 

0 0 𝑥 𝑦 𝑧 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑥 𝑦 𝑧 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑦 𝑦 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑡 𝑧 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑡 𝑡 𝑡 𝑡 𝑡 𝑒 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑓 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑔 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑎 𝑏 𝑏 

𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 𝑐 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑑 

1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 1 

 

Table 4-4 The idempotent nullnorm 𝑉∧
𝐼 on 𝐿 of Example 4.3 

𝑉∧
𝐼 0 𝑥 𝑦 𝑧 𝑡 𝑒 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 1 

0 0 𝑥 𝑦 𝑧 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑥 𝑦 𝑧 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑦 𝑦 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑡 𝑧 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 1 1 𝑎 𝑏 𝑐 𝑑 1 

𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 1 𝑓 1 𝑎 𝑏 𝑐 𝑑 1 

𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 𝑔 𝑎 𝑏 𝑐 𝑑 1 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 

𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 𝑐 𝑎 𝑎 𝑐 𝑐 𝑐 

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑑 𝑑 𝑎 𝑏 𝑐 𝑑 𝑑 

1 𝑎 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑏 𝑐 𝑑 1 
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Note that, in Example 4.3, although 𝐿 isn’t distributive (since  

𝑒 ∧ 𝑎 = 𝑓 ∧ 𝑎 and 𝑒 ∨ 𝑎 = 𝑓 ∨ 𝑎 but 𝑒 ≠ 𝑓), the obtained nullnorms 𝑉∨
𝐼 

and 𝑉∧
𝐼 are idempotent nullnorms on 𝐿 with the indicated zero element 𝑎. 

Corollary 4.3:  

Consider a finite lattice-ordered index set (Λ,⊑) and a lattice-based sum 

of bounded lattices 𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝐷
𝐿  and 

𝑇𝛼 = 𝑇𝐷
𝐿 for all 𝛼 ∈ Λ in 𝑉∨

𝐼 and 𝑉∧
𝐼 in Theorem 4.2, then we obtain the 

following nullnorms  

𝑉∨
𝑑(𝑥, 𝑦) =

{
 
 

 
 
⊤𝛼  𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑉∧
𝑑(𝑥, 𝑦) =

{
 
 

 
 
⊤𝛼  𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Corollary 4.4:  

Consider a finite lattice-ordered index set (Λ,⊑) and a lattice-based sum 

of bounded lattices 𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝑀
𝐿  and 

𝑇𝛼 = 𝑇𝑀
𝐿  for all 𝛼 ∈ Λ in 𝑉∨ and 𝑉∧ in Theorem 4.1, then we obtain the 

following nullnorms  

𝑉∨
𝑀 (𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓𝑥, 𝑦 ∈↑ 𝑎 ,

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

and  

𝑉∧
𝑀 (𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 𝑥, 𝑦 ∈↓ 𝑎,
(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Remark 4.3:  

The zero element 𝑎 of the nullnorms 𝑉∨, 𝑉∧, 𝑉∨
𝐼  and  𝑉∧

𝐼 was restricted to 

be one of the boundaries of some summand. If 𝑎 is inside some summand, 

then 𝑉∨, 𝑉∧, 𝑉∨
𝐼  and  𝑉∧

𝐼 may not work to construct nullnorms on 𝐿. For 

example, if we consider a lattice-ordered index set (Λ,⊑) and a lattice-

based sum of bounded lattices  𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼 , ⊥𝛼 , ⊤𝛼)  and there 

exists some 𝛼 ∈ Λ such that {𝑥, 𝑦, 𝑎} ⊆ 𝐿𝛼 with ⊥𝛼< 𝑥 < 𝑎 < 𝑦 < ⊤𝛼  

and 𝑇𝛼 = 𝑇𝐷
𝐿 , 𝑆𝛼 = 𝑆𝐷

𝐿 , then from Theorem 4.1 and Theorem 4.2 we have:  

𝑉∨(𝑥, 𝑎) = 𝑉∧(𝑥, 𝑎) = 𝑉∨
𝐼(𝑥, 𝑎) = 𝑉∧

𝐼(𝑥, 𝑎) 

= 𝑆𝛼(𝑥, 𝑎) = 𝑆𝐷
𝐿(𝑥, 𝑎) = ⊤𝛼 ≠ 𝑎 

𝑉∨(𝑦, 𝑎) = 𝑉∧(𝑦, 𝑎) = 𝑉∨
𝐼(𝑦, 𝑎) = 𝑉∧

𝐼(𝑦, 𝑎) 

= 𝑇𝛼(𝑦, 𝑎) = 𝑇𝐷
𝐿(𝑦, 𝑎) =⊥𝛼≠ 𝑎 

This violates the zero element property of the nullnorm operator. 

However, the functions 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and  𝑉∧

𝐼 are still nullnorms on 𝐿 in case 

𝑎 is inside some summand if and only if the t-norm and the t-conorm 

defined on this summand are fixed to be the minimum 𝑇𝑀
𝐿  and the 

maximum 𝑆𝑀
𝐿 , respectively.  

4.4 More illustrative examples 
 

Example 4.4:  

Consider the lattice-ordered index set (Λ,⊑) shown in Figure 4-2 and the 

lattice-based sum of bounded lattices 𝐿 shown in Figure 4-3 where 

𝐿⊥Λ = {0}, 𝐿𝛼 = {𝑥, 𝑦, 𝑧, 𝑡, 𝑔}, 𝐿𝛽 = {𝑔}, 𝐿𝛿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, and 

𝐿⊤Λ = {𝑔, ℎ,𝑚, 𝑛, 1}. Let 𝑇⊤Λ be the t-norm defined on 𝐿⊤Λ whose values 

are written in Table 4-5 and 𝑆𝛿 be the t-conorm on 𝐿𝛿 whose values are 

written in Table 4-6. Then the functions 𝑉∨ and 𝑉∧ which values are 
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written in Table 4-7 and Table 4-8, respectively, are nullnorms on 𝐿 with 

zero element 𝑎. 

            

               

 

 

Figure 4-2 The lattice  
(Λ,⊑) of Example 4.4 

 

 

Figure 4-3 The lattice 𝐿 of 

Example 4.4 

 

Table 4-5 The t-norm 𝑇⊤Λ 

on 𝐿⊤Λ  

𝑇⊤Λ  𝑔 ℎ 𝑚 𝑛 1 

𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 

ℎ 𝑔 ℎ 𝑔 𝑔 ℎ 

𝑚 𝑔 𝑔 𝑔 𝑔 𝑚 

𝑛 𝑔 𝑔 𝑔 𝑔 𝑛 

1 𝑔 ℎ 𝑚 𝑛 1 

 

Table 4-6 The t-conorm 𝑆𝛿 

on 𝐿𝛿 

𝑆𝛿 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 
𝑏 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 
𝑐 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 
𝑑 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 
𝑒 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑓 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
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Table 4-7 The nullnorm 𝑉∨ on 𝐿 of Example 4.4 

𝑉∨ 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 
0 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑥 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑦 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑧 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑡 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
ℎ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 
𝑚 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 
𝑛 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 
1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 

 

Table 4-8 The nullnorm 𝑉∧ on 𝐿 of Example 4.4 

𝑉∧ 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 
0 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑥 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑦 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑧 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑡 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑔 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑒 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
ℎ 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 
𝑚 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 
𝑛 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 
1 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 
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Example 4.5:  

Consider the lattice-ordered index set (Λ,⊑) of Example 4.4 and it lattice-

based sum of bounded lattices 𝐿 in Figure 4-4. Let 𝑆⊥Λ = 𝑆𝐷
𝐿 . Then the 

functions 𝑉∨ and 𝑉∧ whose values are written in Table 4-9 and Table  

4-10, respectively, are nullnorms on 𝐿 with zero element 𝑎. Note that 𝑎 is 

inside 𝐿𝛿, then according to Remark 4.3, the t-norm 𝑇𝛿 and the t-conorm 

𝑆𝛿 are considered to be the minimum 𝑇𝑀
𝐿  and the maximum 𝑆𝑀

𝐿 , 

respectively. 

 

Figure 4-4 The lattice 𝐿 of Example 4.5 
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Table 4-9 The nullnorm 𝑉∨ on 𝐿 of Example 4.5 

𝑉∨ 0 𝑥 𝑦 𝑧 𝑡 𝑠 𝑟 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 1 

0 0 𝑥 𝑦 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑥 𝑥 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑦 𝑦 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑡 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑠 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑟 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑐 𝑎 𝑐 𝑎 𝑎 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑎 𝑎 

𝑒 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑐 𝑎 𝑐 𝑎 𝑎 

𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 

1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 1 

 

Table 4-10 The nullnorm 𝑉∧ on 𝐿 of Example 4.5 

𝑉∧ 0 𝑥 𝑦 𝑧 𝑡 𝑠 𝑟 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 1 

0 0 𝑥 𝑦 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑡 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑠 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑟 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑎 𝑎 𝑎 𝑑 𝑎 𝑑 𝑎 𝑎 𝑎 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 

𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 

1 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 
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4.5 Lattice-based sum construction of t-norms and t-conorms on 

bounded lattices 

 

The obtained nullnorms in Theorem 4.1 and Theorem 4.2 can be used to 

construct t-norms and t-conorms from a given family of t-norms and  

t-conorms on bounded lattices, such that if 𝑎 = ⊤ we obtain t-conorms 

and if 𝑎 =⊥ we obtain t-norms. Consequently, we get, as a corollary, the 

following lattice-based sum constructions of t-norms and t-conorms 

obtained by El-Zekey [31] in a more general setting where the lattice-

ordered index set need not be finite and the so-called t-subnorms  

(t-subconorms) can be used (with a little restriction) instead of t-norms  

(t-conorms) as summands in the lattice-based sum construction of t-norms 

(t-conorms). 

Corollary 4.5:  

With all the assumptions of Theorem 4.1 and Theorem 4.2 the nullnorm 

functions 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and 𝑉∧

𝐼  satisfy the following: 

i. If 𝑎 =⊥, then 𝑉∨ = 𝑉∧ = 𝑉∨
𝐼  = 𝑉∧

𝐼  = 𝑇: 𝐿2 → 𝐿 where  

𝑇(𝑥, 𝑦) = {
𝑇𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

is a t-norm on 𝐿 i.e. the functions 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and 𝑉∧

𝐼 are reduced to 

the lattice-based sum construction of t-norms on 𝐿 given in [31]. 

ii. If 𝑎 = ⊤, then 𝑉∨ = 𝑉∧ = 𝑉∨
𝐼 = 𝑉∧

𝐼 = 𝑆: 𝐿2 → 𝐿 where,  

𝑆(𝑥, 𝑦) = {
𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

is a t-conorm on 𝐿 i.e. the functions 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and 𝑉∧

𝐼 are reduced 

to the lattice-based sum construction of t-conorms on 𝐿 given in 

[31]. 
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We end this section by showing some examples. For more examples for 

the construction of t-norms and t-conorms we recommended [31].  

Example 4.6: 

Consider the lattice-ordered index set (Λ,⊑) in Figure 4-5 and the lattice-

based sum of bounded lattices 𝐿 in Figure 4-6 where 𝐿⊥Λ = {0, 𝑎, 𝑏, 𝑐},  

𝐿𝜀 = 𝐿𝛾 = {𝑐},  𝐿𝛼 = {𝑐, 𝑑, 𝑒, 𝑓}, 𝐿𝛽 = {𝑚, 𝑛, 𝑘, 𝑓},  𝐿𝛿 = {𝑐, ℎ, 𝑔, 𝑟}, 

𝐿𝜇 = {𝑓} and 𝐿⊤Λ = 𝐿𝜈 = {1}.  

Define a drastic product t-norm 𝑇𝐷 and a drastic sum t-conorm 𝑆𝐷 on 

𝐿⊥Λ , 𝐿𝛼 , 𝐿𝛽 and 𝐿𝛿. It is easy to check that the operation 𝑇 whose values 

are written in Table 4-11 is a t-norm on 𝐿 with neutral element 1. Also, 

the operation 𝑆 whose values are written in Table 4-12 is a t-conorm on 𝐿 

with neutral element 0. 

           

 

 

 

Figure 4-5 The lattice  
(Λ,⊑) of Example 4.6 

 

 

Figure 4-6 The lattice 𝐿 of 

Example 4.6 
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Table 4-11 The t-norm 𝑇 on 𝐿 of Example 4.6 

𝑇 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑎 0 0 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 0 0 0 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 

𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 

𝑑 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑑 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑑 

𝑒 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑒 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑒 

𝑓 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑐 𝑐 𝑐 𝑚 𝑛 𝑘 𝑓 

𝑔 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑔 𝑐 𝑐 𝑐 𝑔 

ℎ 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 ℎ 𝑐 𝑐 𝑐 ℎ 

𝑟 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑔 ℎ 𝑟 𝑐 𝑐 𝑐 𝑟 

𝑚 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑚 𝑐 𝑐 𝑐 𝑚 𝑚 𝑚 𝑚 

𝑛 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑛 𝑐 𝑐 𝑐 𝑚 𝑚 𝑚 𝑛 

𝑘 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑘 𝑐 𝑐 𝑐 𝑚 𝑚 𝑚 𝑘 

1 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

 

 

Table 4-12 The t-conorm 𝑆 on 𝐿 of Example 4.6 

𝑆 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

𝑎 𝑎 𝑐 𝑐 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

𝑏 𝑏 𝑐 𝑐 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑟 𝑚 𝑛 𝑘 1 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑓 𝑓 𝑓 1 1 1 𝑓 𝑓 𝑓 1 

𝑒 𝑒 𝑒 𝑒 𝑒 𝑓 𝑓 𝑓 1 1 1 𝑓 𝑓 𝑓 1 

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 1 1 1 𝑓 𝑓 𝑓 1 

𝑔 𝑔 𝑔 𝑔 𝑔 1 1 1 𝑟 𝑟 𝑟 1 1 1 1 

ℎ ℎ ℎ ℎ ℎ 1 1 1 𝑟 𝑟 𝑟 1 1 1 1 

𝑟 𝑟 𝑟 𝑟 𝑟 1 1 1 𝑟 𝑟 𝑟 1 1 1 1 

𝑚 𝑚 𝑚 𝑚 𝑚 𝑓 𝑓 𝑓 1 1 1 𝑚 𝑛 𝑘 1 

𝑛 𝑛 𝑛 𝑛 𝑛 𝑓 𝑓 𝑓 1 1 1 𝑛 𝑓 𝑓 1 

𝑘 𝑘 𝑘 𝑘 𝑘 𝑓 𝑓 𝑓 1 1 1 𝑘 𝑓 𝑓 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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5 Chapter five 

Lattice-based sum construction of uninorms on 

bounded lattices 

 

5.1 Introduction  
 

In this chapter we give our proposal method for constructing uninorms on 

bounded lattices. Similarly, as in the case of nullnorm, we also restrict our 

consideration for the lattice-ordered index set to be finite and each 

summand of the underlying bounded lattice 𝐿 to be a bounded lattice. The 

neutral element 𝑒 of the uninorm may be equal to one of the boundaries 

of some summand or inside some summand. Therefore, we restrict our 

consideration to the case in which 𝑒 is one of the boundaries of some 

summand, and we will explain what will happen if it is inside some 

summand. By our construction methods introduced in this chapter, we can 

obtain t-norms and t-conorms from a given family of t-norms and  

t-conorms on bounded lattices. The idempotent uninorms construction on 

bounded lattices is also available by our construction methods, just by 

putting the corresponding idempotent t-norm and idempotent t-conorm on 

each summand lattice of the underlying bounded lattice 𝐿. 

 

5.2 Construction of uninorms on bounded lattices 

 

Theorem 5.1:  

Consider a finite lattice-ordered index set (Λ,⊑) and let  

𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼) be a lattice-based sum of bounded lattices. 

Let 𝑒 ∈ 𝐿 with 𝑒 ∈ {⊥𝛼 , ⊤𝛼} for some 𝛼 ∈ Λ and (𝑇𝛼)𝛼∈Λ ((𝑆𝛼)𝛼∈Λ) be  

a family of t-norms (t-conorms) on the corresponding 
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summands (𝐿𝛼)𝛼∈Λ. Then the functions 𝑈↓: 𝐿
2 → 𝐿 and 𝑈↑: 𝐿

2 → 𝐿 

defined as follows: 

𝑈↓(𝑥, 𝑦) =

{
  
 

  
 
𝑇𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑒,

𝑆𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑒,

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↓ 𝑒, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑒, 𝛼 ≠ 𝛽,

𝑦 𝑖𝑓 𝑥 ∈↓ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↓ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

               (5.1) 

and  

𝑈↑(𝑥, 𝑦) =

{
  
 

  
 
𝑇𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑒,

𝑆𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑒,

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑒, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑒, 𝛼 ≠ 𝛽,

𝑦 𝑖𝑓 𝑥 ∈↑ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↑ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

           (5.2) 

are uninorms on 𝐿 with neutral element 𝑒. 

Proof:  

The proof runs only for the operation 𝑈↓. The operation 𝑈↑ has a similar 

proof. 

First it is necessary to check that the operation 𝑈↓ is well defined. A 

problem can only arise if (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 with 𝑥 ∈ 𝐿𝛼 ∩ 𝐿𝛽 for some 

𝛼, 𝛽 ∈ Λ and write,  

i. 𝑥, 𝑦 ∈↓ 𝑒,  

a) 𝛼 ⊏ 𝛽. In this case: 

𝑈↓(𝑥, 𝑦) = 𝑇𝛽(𝑥, 𝑦) = 𝑥 ∧𝛽 𝑦 = 𝑥 if we consider 

that 𝑥, 𝑦 ∈ 𝐿𝛽 and 𝑈↓(𝑥, 𝑦) = 𝑥 ∧ 𝑦 = 𝑥 if we consider 
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that 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽. Thus getting the same result in 

both cases. 

b) 𝛼 ∥ 𝛽. In this case we have either 𝑥 = ⊤𝛼 = ⊤𝛽 and hence, 

𝑈↓(𝑥, 𝑦) = 𝑇𝛽(𝑥, 𝑦) = 𝑥 ∧𝛽 𝑦 = 𝑥 ∧ 𝑦 = 𝑦 or 𝑥 =⊥𝛼=⊥𝛽 

and hence, 𝑈↓(𝑥, 𝑦) = 𝑇𝛽(𝑥, 𝑦) = 𝑥 ∧𝛽 𝑦 = 𝑥 ∧ 𝑦 = 𝑥. 

ii. 𝑥, 𝑦 ∈↑ 𝑒. In this case we have a dual proof of Case (i) due to the 

duality between the t-norm and the t-conorm. 

Now, we need to prove that 𝑈↓ is a uninorm on 𝐿 with neutral element 𝑒.  

Commutativity: The commutativity of 𝑈↓ is preserved due to the 

commutativity of the t-norm and the t-conorm on each summand also ∧ 

and ∨ on 𝐿. 

Neutral element: We prove that 𝑒 is the neutral element of 𝑈↓ by splitting 

the following cases for some 𝑥 ∈ 𝐿 

i. 𝑥 ∈↓ 𝑒, 

a) If there exists some 𝛼 ∈ Λ such that {𝑥, 𝑒} ⊆ 𝐿𝛼, then 

(from Remark 4.1) we have, 

𝑈↓(𝑥, 𝑒) = 𝑇𝛼(𝑥, 𝑒) = 𝑥 ∧𝛼 𝑒 = 𝑥 

b) If there is no 𝛼 ∈ Λ such that {𝑥, 𝑒} ⊆ 𝐿𝛼, then 

𝑈↓(𝑥, 𝑒) = 𝑥 ∧ 𝑒 = 𝑥 

ii. 𝑥 ∈↑ 𝑒. This case has a dual proof of Case (i) due to the duality 

between the t-norm and the t-conorm. 

iii. 𝑥 ∥ 𝑒. Then directly from the definition of 𝑈↓ we have 

𝑈↓(𝑥, 𝑒) = 𝑥 
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Monotonicity: We prove that if 𝑥 ≤ 𝑦 then for all 𝑧 ∈ 𝐿, 

𝑈↓(𝑥, 𝑧) ≤ 𝑈↓(𝑦, 𝑧). The proof is split into all the possible cases, as 

follows: 

Case (1): Suppose that 𝑥, 𝑦 ∈↓ 𝑒. Then we have the following subcases 

Subcase 1(a): 𝑧 ∈↓ 𝑒, 

i. There exists some 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼. If 𝑧 ∈ 𝐿𝛼, then 

monotonicity holds trivially due to the monotonicity of 𝑇𝛼 on 𝐿𝛼. 

If 𝑧 ∉ 𝐿𝛼, then  

𝑈↓(𝑥, 𝑧) = 𝑥 ∧ 𝑧 ≤ 𝑦 ∧ 𝑧 = 𝑈↓(𝑦, 𝑧) 

ii. If there is no 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼, then we have one of the 

following possibilities 

a) 𝑥 and 𝑧 are in the same summand. We observe it by 

considering {𝑥, 𝑧} ⊆ 𝐿𝛼 and 𝑦 ∉ 𝐿𝛼, then  

𝑈↓(𝑥, 𝑧) = 𝑇𝛼(𝑥, 𝑧) ≤ 𝑥 ∧ 𝑧 ≤ 𝑦 ∧ 𝑧 = 𝑈↓(𝑦, 𝑧) 

b) If 𝑦 and 𝑧 are in the same summand, we observe it by 

considering {𝑦, 𝑧} ⊆ 𝐿𝛼 and 𝑥 ∈ 𝐿𝛽 with 𝛼 ≠ 𝛽 for 

some 𝛼, 𝛽 ∈ Λ. Then (from Lemma 4.1) we have either 

𝛽 ⊏ 𝛼 or 𝛽 ∥ 𝛼. In case 𝛽 ⊏ 𝛼 then 𝑥 < 𝑢 for all 𝑢 ∈ 𝐿𝛼 

and hence, 𝑈↓(𝑥, 𝑧) = 𝑥 ∧ 𝑧 = 𝑥 ≤ 𝑇𝛼(𝑦, 𝑧) = 𝑈↓(𝑦, 𝑧) 

In case 𝛽 ∥ 𝛼, we have one of the following possibilities  

i) 𝑦 ∈ {⊥𝛼, ⊤𝛼},  and hence we have 

𝑈↓(𝑥, 𝑧) = 𝑥 ∧ 𝑧 ≤ 𝑦 ∧ 𝑧 = 𝑇𝛼(𝑦, 𝑧) = 𝑈↓(𝑦, 𝑧) 

ii) 𝑦 ∈ 𝐿𝛼\{⊥𝛼, ⊤𝛼}, then necessarily 𝑥 =⊥𝛽 and 

hence we have 𝑈↓(𝑥, 𝑧) = 𝑥 ∧ 𝑧 = 𝑥 ≤ 𝑇𝛼(𝑦, 𝑧) =

𝑈↓(𝑦, 𝑧) 
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iii. All arguments are in different summands. Then monotonicity 

holds due to the monotonicity of  ∧ on 𝐿. 

Subcase 1(b): 𝑧 ∈↑ 𝑒 ⟹ 𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 = 𝑧 = 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Subcase 1(c): 𝑧 ∥ 𝑒 ⟹ 𝑈↓(𝑥, 𝑧) = 𝑧 = 𝑈↓(𝑦, 𝑧) 

Case (2): Suppose that 𝑥, 𝑦 ∈↑ 𝑒. Then we have the following subcases 

Subcase 2(a): 𝑧 ∈↑ 𝑒. This case has a duel proof of Case 1(a) due to the 

duality between the t-norm and the t-conorm. 

Subcase 2(b): If 𝑧 ∈↓ 𝑒 or 𝑧 ∥ 𝑒, then 

𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Case (3): Suppose that 𝑥 ∈↓ 𝑒, 𝑦 ∈↑ 𝑒,  

i. 𝑧 ∈↓ 𝑒. Then we have either 𝑥 and 𝑧 are in the same summand or 

𝑥 and 𝑧 are in different summands. In both cases and due to the  

t-norm on each summand and ∧ on 𝐿 we have 𝑈↓(𝑥, 𝑧) ≤ 𝑒 and 

hence,  

𝑈↓(𝑥, 𝑧) ≤ 𝑒 ≤ 𝑦 = 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

ii. If 𝑧 ∈↑ 𝑒, then we have either 𝑦 and 𝑧 are in the same summand 

or 𝑦 and 𝑧 are in different summands. In both cases and due to the  

t-conorm defined on each summand and ∨ on 𝐿 we have  

𝑧 ≤ 𝑈↓(𝑦, 𝑧) and hence we have 

𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 = 𝑧 ≤ 𝑈↓(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Case (4): Suppose that 𝑥 ∈↓ 𝑒, 𝑦 ∥ 𝑒,  

i. If 𝑧 ∈↓ 𝑒, then in similar way of Case 3(i), we have 𝑈↓(𝑥, 𝑧) ≤ 𝑥 

and hence, 
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𝑈↓(𝑥, 𝑧) ≤ 𝑥 ≤ 𝑦 = 𝑈↓(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑒 ⟹ 𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑒 ⟹ 𝑈↓(𝑥, 𝑧) = 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Case (5): Suppose that 𝑥 ∥ 𝑒, 𝑦 ∈↑ 𝑒. 

i. If 𝑧 ∈↓ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑥 ≤ 𝑦 = 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

ii. If 𝑧 ∈↑ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 ≤ 𝑈↓(𝑦, 𝑧) 

iii. If 𝑧 ∥ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Case (6): Suppose that 𝑥 ∥ 𝑒, 𝑦 ∥ 𝑒, 

i. 𝑧 ∈↓ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑥 ≤ 𝑦 = 𝑈↓(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑒 or 𝑧 ∥ 𝑒, then 𝑈↓(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧) 

Associativity: We prove that 𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) for all  

𝑥, 𝑦, 𝑧 ∈ 𝐿.  Again, the proof is split into all the possible cases by 

considering the relationship between the arguments 𝑥, 𝑦, 𝑧 and 𝑒 as 

follows: 

Case (1): Suppose that all arguments are from ↓ 𝑒. Then we have one of 

the following possibilities 

i. There exists some 𝛼 ∈ Λ such that {𝑥, 𝑦, 𝑧} ⊆ 𝐿𝛼. In this case the 

associativity holds trivially due to the associativity of 𝑇𝛼 on 𝐿𝛼. 

ii. All arguments are from different summands. In this case the 

associativity holds trivially due to the associativity of ∧ on 𝐿.   

In this case, we must note that, if 𝑥 ∧ 𝑦 and 𝑧 are in the same 

summand, then necessarily 𝑥 ∧ 𝑦 is equal to one of the boundaries 

of this summand and hence the associativity holds due to the 

associativity of ∧. 
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iii. Exactly two arguments are from the same summand. We observe 

it by considering the following cases: 

a) There exist some 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼 and 𝑧 ∉ 𝐿𝛼. 

If 𝑥 or 𝑦 is equal to one of the boundaries of 𝐿𝛼 then 

associativity holds trivially due to the associativity of ∧ 

on 𝐿. Therefore, we assume that 𝑥, 𝑦 ∈ 𝐿𝛼\{⊥𝛼 , ⊤𝛼}. In 

this case, we compare 𝑧 with 𝑥 and 𝑦, as follows 

If 𝑥 > 𝑧 or 𝑦 > 𝑧, then 

𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) = 𝑈↓(𝑇𝛼(𝑥, 𝑦), 𝑧) = 𝑇𝛼(𝑥, 𝑦) ∧ 𝑧 = 𝑧 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∧ 𝑧) = 𝑈↓(𝑥, 𝑧) = 𝑥 ∧ 𝑧 = 𝑧 

If 𝑥 < 𝑧 or 𝑦 < 𝑧, then 

𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) = 𝑈↓(𝑇𝛼(𝑥, 𝑦), 𝑧) = 𝑇𝛼(𝑥, 𝑦) ∧ 𝑧

= 𝑇𝛼(𝑥, 𝑦) 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∧ 𝑧) = 𝑈↓(𝑥, 𝑦) = 𝑇𝛼(𝑥, 𝑦) 

If 𝑥 ∥ 𝑧 or 𝑦 ∥ 𝑧, then 𝑥 ∧ 𝑧 = 𝑦 ∧ 𝑧 = 𝑥 ∧ 𝑦 ∧ 𝑧 =

𝑇𝛼(𝑥, 𝑦) ∧ 𝑧 and hence, 

𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) = 𝑈↓(𝑇𝛼(𝑥, 𝑦), 𝑧) = 𝑇𝛼(𝑥, 𝑦) ∧ 𝑧 

= 𝑥 ∧ 𝑦 ∧ 𝑧 = 𝑥 ∧ 𝑈↓(𝑦, 𝑧) 

= 𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) 

b) There exists some 𝛽 ∈ Λ such that {𝑥, 𝑧} ⊆ 𝐿𝛽 and 𝑦 ∉ 𝐿𝛽. 

This case is similar to Case (a) resulting in similar proof. 

c) There exists some 𝛿 ∈ Λ such that {𝑦, 𝑧} ⊆ 𝐿𝛿  and 𝑥 ∉ 𝐿𝛿. 

This case is similar to Case (a) resulting in similar proof. 

Case (2): Suppose that all arguments are from ↑ 𝑒. This case has a dual 

proof to Case (1) due to the duality between the t-norm and the t-conorm 

operators. 
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Case (3): Suppose that exactly two arguments are from ↓ 𝑒. We observe 

it by distinguishing the following subcases 

Subcase 3(a): Assume that 𝑥, 𝑦 ∈↓ 𝑒 and 𝑧 ∉↓ 𝑒. In this case we have 

either 𝑥 and 𝑦 are in the same summand or 𝑥 and 𝑦 are in different 

summands. In both cases, we have 𝑈↓(𝑥, 𝑦) ≤ 𝑒 and hence for 

i. 𝑧 > 𝑒,  

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑈↓(𝑥, 𝑧) 

= 𝑥 ∨ 𝑧 = 𝑧 = 𝑈↓(𝑥, 𝑦) ∨ 𝑧 

= 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. 𝑧 ∥ 𝑒, 𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑧) = 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

Subcase 3(b): Assume that 𝑥, 𝑧 ∈↓ 𝑒 and 𝑦 ∉↓ 𝑒. This case is similar to 

Case 3(a) resulting in similar proof. 

Subcase 3(c): Assume that 𝑦, 𝑧 ∈↓ 𝑒 and 𝑥 ∉↓ 𝑒. This case is similar to 

Case 3(a) resulting in similar proof. 

Case (4): Suppose that exactly two arguments are from ↑ 𝑒. We observe 

it by distinguishing the following subcases 

Subcase 4(a): Assume that 𝑥, 𝑦 ∈↑ 𝑒 and 𝑧 ∉↑ 𝑒. In this case we have 

either 𝑥 and 𝑦 are in the same summand or 𝑥 and 𝑦 are in different 

summands. In both cases, we have 𝑈↓(𝑥, 𝑦) ≥ 𝑒 and hence for 

i. 𝑧 < 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑈↓(𝑥, 𝑦) 

= 𝑈↓(𝑥, 𝑦) ∨ 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. If 𝑧 ∥ 𝑒, then 𝑈↓(𝑦, 𝑧) = 𝑦 ∨ 𝑧 ≥ 𝑒 and hence we distinguish the 

following cases 
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a) There exists some 𝛽 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛽, then we 

have either 𝑦 ∨ 𝑧 ∈ 𝐿𝛽 or 𝑦 ∨ 𝑧 ∉ 𝐿𝛽. In case 𝑦 ∨ 𝑧 ∈ 𝐿𝛽 

then associativity holds due to the associativity of 𝑆𝛽 

on 𝐿𝛽. In case 𝑦 ∨ 𝑧 ∉ 𝐿𝛽 the associativity holds due to the 

associativity of ∨ on 𝐿. 

b) There is no 𝛽 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛽, then associativity 

holds due to the associativity of ∨ on 𝐿. 

Subcase 4(b): Assume that 𝑥, 𝑧 ∈↑ 𝑒 and 𝑦 ∉↑ 𝑒. In this case, we have 

either 𝑥 and 𝑧 are in the same summand or 𝑥 and 𝑧 are in different 

summands. In both cases, we have 

i. 𝑦 < 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑈↓(𝑥, 𝑧) 

= 𝑈↓(𝑥 ∨ 𝑦, 𝑧) 

= 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. 𝑦 ∥ 𝑒. This case is similar to subcase 4(a (ii)) resulting in similar 

proof. 

Subcase 4(c): Assume that 𝑦, 𝑧 ∈↑ 𝑒 and 𝑥 ∉↑ 𝑒. In this case, we have 

either 𝑦 and 𝑧 are in the same summand or 𝑦 and 𝑧 are in different 

summands. In both cases, we have 𝑈↓(𝑦, 𝑧) ≥ 𝑒 and hence for, 

i. 𝑥 < 𝑒, we have 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑥 ∨ 𝑈↓(𝑦, 𝑧) = 𝑈↓(𝑦, 𝑧) 

= 𝑈↓(𝑥 ∨ 𝑦, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. 𝑥 ∥ 𝑒. This case is similar to subcase 4(a(ii)) resulting in similar 

proof. 
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Case (5): Suppose that exactly two arguments are incomparable with 𝑒. 

We observe it by distinguishing the following subcases 

Subcase 5(a): Assume that 𝑥 ∥ 𝑒, 𝑦 ∥ 𝑒 and 𝑧 ∦ 𝑒. Then we have  

𝑈↓(𝑥, 𝑦) = 𝑥 ∨ 𝑦 and hence we have one of the following possibilities 

i. 𝑥 ∨ 𝑦 > 𝑒, 

a) 𝑧 < 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦) = 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑦 ∨ 𝑧 

= 𝑈↓(𝑥, 𝑦) ∨ 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

b) 𝑧 > 𝑒. In this case we have either 𝑧 and 𝑥 ∨ 𝑦 are in the 

same summand or 𝑧 and 𝑥 ∨ 𝑦 are in different summands. 

In both cases and from the fact that 𝑥 ∨ 𝑦 is necessarily on 

the boundaries for some summand, we have  

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 

= 𝑈↓(𝑥, 𝑦) ∨ 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. 𝑥 ∨ 𝑦 ∥ 𝑒, 

a) 𝑧 < 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦) = 𝑥 ∨ 𝑦 

= 𝑈↓(𝑥 ∨ 𝑦, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

b) 𝑧 > 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 

= 𝑈↓(𝑥, 𝑦) ∨ 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

Subcase 5(b): 𝑥 ∥ 𝑒, 𝑧 ∥ 𝑒 and 𝑦 ∦ 𝑒, this case is similar to subcase 5(a) 

resulting in a similar proof. 

Subcase 5(c): 𝑦 ∥ 𝑒, 𝑧 ∥ 𝑒 and 𝑥 ∦ 𝑒, this case is similar to subcase 5(a) 

resulting in a similar proof. 
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For the remaining possibilities we distinguish the following cases 

i. 𝑥 ∈↓ 𝑒, 𝑦 ∈↑ 𝑒, 𝑧 ∥ 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑧 = 𝑈↓(𝑦, 𝑧)

= 𝑈↓(𝑥 ∨ 𝑦, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

ii. 𝑥 ∈↓ 𝑒, 𝑦 ∥ 𝑒, 𝑧 ∈↑ 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑧 

= 𝑈↓(𝑦, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

iii. 𝑥 ∈↑ 𝑒, 𝑦 ∈↓ 𝑒, 𝑧 ∥ 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑧) = 𝑈↓(𝑥 ∨ 𝑦, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

iv. 𝑥 ∈↑ 𝑒, 𝑦 ∥ 𝑒, 𝑧 ∈↓ 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦) = 𝑈↓(𝑥, 𝑦) ∨ 𝑧 = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

v. 𝑥 ∥ 𝑒, 𝑦 ∈↓ 𝑒, 𝑧 ∈↑ 𝑒, 

𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑈↓(𝑥, 𝑧) = 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

vi. 𝑥 ∥ 𝑒, 𝑦 ∈↑ 𝑒, 𝑧 ∈↓ 𝑒, 

  𝑈↓(𝑥, 𝑈↓(𝑦, 𝑧)) = 𝑈↓(𝑥, 𝑦 ∨ 𝑧) = 𝑈↓(𝑥, 𝑦) = 𝑈↓(𝑥, 𝑦) ∨ 𝑧

= 𝑈↓(𝑈↓(𝑥, 𝑦), 𝑧) 

Example 5.1:  

Consider the lattice-ordered index set (Λ,⊑) in Figure 5-1 and its lattice-

based sum of bounded lattices 𝐿 in Figure 5-2 where  

𝐿⊥Λ = {0, 𝑎, 𝑏, 𝑐}, 𝐿𝛿 = {𝑐, 𝑑},  𝐿𝛽 = {𝑑, 𝑓, 𝑔, ℎ},  𝐿𝛼 = {𝑒, ℎ} and 

 𝐿⊤Λ = {ℎ,𝑚, 𝑛, 1}. Let 𝑇𝛼 = 𝑇𝐷 and 𝑆𝛼 = 𝑆𝐷 on 𝐿𝛼 for all 𝛼 ∈ Λ. Then 

the functions 𝑈↓ and 𝑈↑ whose values are written in Tables 5-1 and 5-2 

are uninorms on 𝐿 with neutral element 𝑒 which are constructed using 

Equations (5.1) and (5.2), respectively. 
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Figure 5-1 The lattice (Λ,⊑) of Example 5.1 

 

Figure 5-2 The lattice 𝐿 of Example 5.1 
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Table 5-1 The uninorm 𝑈↓ on 𝐿 of Example 5.1 

𝑈↓ 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 

0 0 0 0 0 0 𝑓 𝑔 ℎ 𝑚 𝑛 0 1 

𝑎 0 0 0 𝑎 𝑎 𝑓 𝑔 ℎ 𝑚 𝑛 𝑎 1 

𝑏 0 0 0 𝑏 𝑏 𝑓 𝑔 ℎ 𝑚 𝑛 𝑏 1 

𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑓 𝑔 ℎ 𝑚 𝑛 𝑐 1 

𝑑 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑑 1 

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 ℎ ℎ 𝑚 𝑛 𝑓 1 

𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 ℎ 𝑔 ℎ 𝑚 𝑛 𝑔 1 

ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ 𝑚 𝑛 ℎ 1 

𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 1 1 𝑚 1 

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 1 1 𝑛 1 

𝑒 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Table 5-2 The uninorm 𝑈↑ on 𝐿 of Example 5.1 

𝑈↑ 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑎 0 0 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 0 0 0 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 

𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 

𝑑 0 𝑎 𝑏 𝑐 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 

𝑓 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑑 𝑓 𝑓 𝑓 𝑓 𝑓 

𝑔 0 𝑎 𝑏 𝑐 𝑑 𝑑 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 

ℎ 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 ℎ 1 

𝑚 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 𝑚 1 1 𝑚 1 

𝑛 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 𝑛 1 1 𝑛 1 

𝑒 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 

1 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 1 1 1 1 1 
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Corollary 5.1:  

With all the assumptions of Theorem 5.1, the uninorm functions 𝑈↓ and 

𝑈↑ as defined in Equations (5.1) and (5.2), respectively, satisfy the 

following: 

i. If 𝑒 = ⊤, then  

𝑈↓(𝑥, 𝑦) = 𝑈↑(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) = {
𝑇𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

is a t-norm on 𝐿 i.e. the functions 𝑈↓ and 𝑈↑ are reduced to the 

lattice-based sum construction of t-norms on 𝐿 given in [31]. 

ii. If 𝑒 =⊥, then  

𝑈↓(𝑥, 𝑦) = 𝑈↑(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) = {
𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

is a t-conorm on 𝐿 i.e. the functions 𝑈↓ and 𝑈↑ are reduced to the 

lattice-based sum construction of t-conorms on 𝐿 given in [31]. 

Remark 5.1:  

The obtained results in Corollary 5.1 are special cases of the obtained 

general results in [31], in which it depends on t-subnorms (t-subconorms 

by duality) and a lattice-ordered index set which need not be finite. 

Remark 5.2:  

Given a finite lattice-ordered index set (Λ,⊑) and a lattice-based sum of 

bounded lattices 𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼, ⊥𝛼, ⊤𝛼), then the functions 𝑈↓ and 𝑈↑ 

in Theorem 5.1 are disjunctive and conjunctive uninorms on 𝐿, 

respectively, such that 𝑈↓(⊥, ⊤) = ⊤ and 𝑈↑(⊥, ⊤) =⊥. 

Corollary 5.2:  

If we put 𝑇𝛼 = 𝑇𝑀
𝐿  and 𝑆𝛼 = 𝑆𝑀

𝐿  on 𝐿𝛼 for all 𝛼 ∈ Λ in Equation (5.1) and 

(5.2) in Theorem 5.1, then the functions 𝑈↓
𝐷 and 𝑈↑

𝐶 defined as  
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 𝑈↓
𝐷(𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓 𝑥, 𝑦 ∈↓ 𝑒,

𝑦 𝑖𝑓 𝑥 ∈↓ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↓ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                   (5.3) 

and  

𝑈↑
𝐶(𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 𝑥, 𝑦 ∈↑ 𝑒,

𝑦 𝑖𝑓 𝑥 ∈↑ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↑ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                  (5.4) 

are disjunctive and conjunctive idempotent uninorms on 𝐿, respectively. 

Note that, the obtained uninorms 𝑈↓
𝐷 and 𝑈↑

𝐶 in Equations (5.3) and (5.4), 

respectively, are exactly the same greatest and smallest idempotent 

uninorms, respectively, obtained in [11]. 

Example 5.2:  

Consider the lattice-ordered index set (Λ,⊑) and the lattice-based sum of 

bounded lattice 𝐿 of Example 5.1. Let 𝑇𝛼 = 𝑇𝑀
𝐿  and 𝑆𝛼 = 𝑆𝑀

𝐿  on 𝐿𝛼 for all 

𝛼 ∈ Λ. Then the functions 𝑈↓
𝐷 and 𝑈↑

𝐶 whose values are written in Tables 

5-3 and 5-4 are, respectively, idempotent uninorms on 𝐿 with neutral 

element 𝑒. 
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Table 5-3 The idempotent uninorm 𝑈↓
𝐷 on 𝐿 of Example 5.2 

𝑈↓
𝐷 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 
0 0 0 0 0 0 𝑓 𝑔 ℎ 𝑚 𝑛 0 1 
𝑎 0 𝑎 0 𝑎 𝑎 𝑓 𝑔 ℎ 𝑚 𝑛 𝑎 1 
𝑏 0 0 𝑏 𝑏 𝑏 𝑓 𝑔 ℎ 𝑚 𝑛 𝑏 1 
𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑓 𝑔 ℎ 𝑚 𝑛 𝑐 1 
𝑑 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑑 1 
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 ℎ ℎ 𝑚 𝑛 𝑓 1 
𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 ℎ 𝑔 ℎ 𝑚 𝑛 𝑔 1 
ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ 𝑚 𝑛 ℎ 1 
𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 1 𝑚 1 
𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 1 𝑛 𝑛 1 
𝑒 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Table 5-4 The idempotent uninorm 𝑈↑
𝐶 on 𝐿 of Example 5.2 

𝑈↑
𝐶  0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 
𝑎 0 𝑎 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 0 0 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 
𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 
𝑑 0 𝑎 𝑏 𝑐 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 
𝑓 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑑 𝑓 𝑓 𝑓 𝑓 𝑓 
𝑔 0 𝑎 𝑏 𝑐 𝑑 𝑑 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 
ℎ 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 ℎ 1 
𝑚 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 𝑚 𝑚 1 𝑚 1 
𝑛 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 𝑛 1 𝑛 𝑛 1 
𝑒 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 ℎ 𝑚 𝑛 𝑒 1 
1 0 𝑎 𝑏 𝑐 𝑑 𝑓 𝑔 1 1 1 1 1 

 

Corollary 5.3:   

If we put 𝑇𝛼 = 𝑇𝐷
𝐿 and 𝑆𝛼 = 𝑆𝐷

𝐿  on 𝐿𝛼 for all 𝛼 ∈ Λ in Equation (5.1) and 

(5.2) in Theorem 5.1, then we obtain the following uninorms on 𝐿 with 

neutral element 𝑒 ∈ 𝐿: 
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𝑈↓
𝑑(𝑥, 𝑦) =

{
  
 

  
 
⊥𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑒)\{⊤𝛼},

⊤𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑒)\{⊥𝛽},

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↓ 𝑒, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑒, 𝛼 ≠ 𝛽,

𝑦 𝑖𝑓 𝑥 ∈↓ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↓ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                

𝑈↑
𝑑(𝑥, 𝑦) =

{
  
 

  
 
⊥𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑒)\{⊤𝛼},

⊤𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑒)\{⊥𝛽},

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑒, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑒, 𝛼 ≠ 𝛽,

𝑦 𝑖𝑓 𝑥 ∈↑ 𝑒 𝑎𝑛𝑑 𝑦 ∥ 𝑒,

𝑥 𝑖𝑓 𝑦 ∈↑ 𝑒 𝑎𝑛𝑑 𝑥 ∥ 𝑒,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

              

Remark 5.3:  

Given a lattice-ordered index set (Λ,⊑) and a lattice-based sum of 

bounded lattices  𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼, ⊥𝛼, ⊤𝛼)  and 𝑒 ∈ 𝐿, then the 

functions 𝑈↓ and 𝑈↑ in Theorem 5.1 can be equivalently defined as 

𝑈↓(𝑥, 𝑦) = {

𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈↓ 𝑒,

𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈↑ 𝑒,

𝐻(𝑥) ∨ 𝐻(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑈↑(𝑥, 𝑦) = {

𝑇𝑒(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈↓ 𝑒,

𝑆𝑒(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈↑ 𝑒,

𝑀(𝑥) ∧ 𝑀(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

where 𝐻,𝑀: 𝐿2 → 𝐿 are mappings given by 

𝐻(𝑥) = {
⊥ 𝑖𝑓 𝑥 ∈↓ 𝑒,
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 𝑀(𝑥) = {
⊤ 𝑖𝑓 𝑥 ∈↑ 𝑒,
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and 𝑇𝑒 , 𝑆𝑒 are lattice-based sum of t-norms and t-conorms on ↓ 𝑒 and ↑ 𝑒, 

respectively, as a direct consequence from [31]. 
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Remark 5.4:  

The uninorms 𝑈↓ and 𝑈↑ given in Equations (5.1) and (5.2), respectively 

are based on a family of t-norms and t-conorms defined on each summand 

lattice of the underlying lattice-based sum 𝐿. Consequently, given  

a bounded lattice (𝐿, ≤, ⊥, ⊤) and 𝑒 ∈ 𝐿 and a t-norm 𝑇𝑒 on [⊥, 𝑒] and  

a t-conorm  𝑆𝑒 on [𝑒, ⊤] which are not a lattice-based sums, then the 

functions 𝑈↓ and 𝑈↑ given in Equations (5.1) and (5.2) are not a uninorms 

on 𝐿 as we can see in the following example. 

Example 5.3:  

Consider the bounded lattice 𝐿 in Figure 5-2. Let  

𝑇𝑒 = 𝑇𝐷
𝐿 on [0, 𝑒] and 𝑆𝑒 = 𝑆𝐷

𝐿  on [𝑒, 1]. Then the functions 𝑈↓ and 𝑈↑ in 

Equations (5.1) and (5.2) are not uninorms on 𝐿 with neutral element 𝑒, 

such that, if the elements ℎ, 𝑓, 𝑔 ∈ 𝐿, then we have, 

𝑈↓(ℎ, 𝑈↓(𝑓, 𝑔)) = 𝑈↓(ℎ, 𝑓 ∨ 𝑔) = 𝑈↓(ℎ, ℎ) = 𝑆𝑒(ℎ, ℎ) = 1, 

𝑈↓(𝑈↓(ℎ, 𝑓), 𝑔) = 𝑈↓(ℎ ∨ 𝑓, 𝑔) = 𝑈↓(ℎ, 𝑔) = ℎ ∨ 𝑔 = ℎ. 

Since 1 ≠ ℎ, then 𝑈↓ is not associative and hence 𝑈↓ is not a uninorm on 𝐿. 

Similarly, if we consider the elements 𝑑, 𝑓, 𝑔 ∈ 𝐿, then we have, 

𝑈↑(𝑑, 𝑈↑(𝑓, 𝑔)) = 𝑈↑(𝑑, 𝑓 ∧ 𝑔) = 𝑈↑(𝑑, 𝑑) = 𝑇𝑒(𝑑, 𝑑) = 0, 

𝑈↑(𝑈↑(𝑑, 𝑓), 𝑔) = 𝑈↑(𝑑 ∧ 𝑓, 𝑔) = 𝑈↑(𝑑, 𝑔) = 𝑑 ∧ 𝑔 = 𝑑. 

Since 0 ≠ 𝑑, then 𝑈↑ is not associative and hence 𝑈↑ is not a uninorm 

on 𝐿. 

Remark 5.5:  

The neutral element 𝑒 of the uninorms 𝑈↓ and 𝑈↑ in Theorem 5.1 were 

restricted to be one of the boundaries of some summand lattice of the 

underlying bounded lattice 𝐿. If the neutral element 𝑒 is inside some 
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summand, then the functions 𝑈↓ and 𝑈↑ may not work to construct 

uninorms on 𝐿. For example, if we consider a finite lattice-ordered index 

set (Λ,⊑) and a lattice-based sum of bounded lattices   

𝐿 =⊕𝛼∈Λ (𝐿𝛼, ≤𝛼, ⊥𝛼, ⊤𝛼)  and there exists some 𝛼 ∈ Λ such that 

{𝑥, 𝑦, 𝑒} ⊆ 𝐿𝛼 with ⊥𝛼< 𝑥 < 𝑒 < 𝑦 < ⊤𝛼 and 𝑇𝛼 = 𝑇𝐷
𝐿 , 𝑆𝛼 = 𝑆𝐷

𝐿  then 

from Theorem 5.1, we have  

𝑈↓(𝑥, 𝑒) = 𝑈↑(𝑥, 𝑒) = 𝑇𝛼(𝑥, 𝑒) = 𝑇𝐷
𝐿(𝑥, 𝑒) =⊥𝛼≠ 𝑥, 

𝑈↓(𝑦, 𝑒) = 𝑈↑(𝑦, 𝑒) = 𝑆𝛼(𝑦, 𝑒) = 𝑆𝐷
𝐿(𝑦, 𝑒) = ⊤𝛼 ≠ 𝑦. 

This violates the neutral element property of the uninorm operator. 

However, the functions 𝑈↓ and 𝑈↑ are still uninorms on 𝐿 in case 𝑒 is 

inside some summand if and only if the t-norm and the t-conorm defined 

on this summand are fixed to be the minimum 𝑇𝑀
𝐿  and the maximum 𝑆𝑀

𝐿 , 

respectively.  
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6 Chapter six 

Conclusions and future work 
 

6.1 Conclusions 
 

In this thesis, based on the lattice-based sum scheme that has been 

recently introduced by El-Zekey et al [30]; we developed new methods 

for constructing nullnorms and uninorms on bounded lattices which are  

a lattice-based sum of their summand sublattices. Subsequently, the 

obtained results are applied for building several new nullnorm and 

uninorm operations on bounded lattices. As a by-product, the lattice-

based sum constructions of t-norms and t-conorms obtained by El-Zekey 

(see [31]) are obtained in a more general setting where the lattice-ordered 

index set need not to be finite and so-called t-subnorms (t-subconorms) 

can be used (with a little restriction) instead of t-norms (t-conorms) as 

summands. Furthermore, new idempotent nullnorms on bounded lattices, 

different from the ones given in [16], have been also obtained. It is 

pointed out that, unlike [16], in our construction of the idempotent 

nullnorms, the underlying lattices need not to be distributive. We remark 

that lattice-based sum constructions of non-commutative associative 

aggregation operators such as pseudo-t-norms, pseudo-t-conorms, pseudo 

uninorms and pseudo nullnorms can be also obtained just by eliminating 

the commutativity property.  

6.2 Future work 
 

Our work in this thesis open a new gates for the investegation of 

aggregation functions on bounded lattices. Thus, in the same approach, 

we can generate other aggregation functions on bounded lattices.  
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Clearly, inspired by ideas of clifford [17] (in the context of ordinal sums 

of abstract semigroups),  the lattice-based sum approach could deal with 

lattice-based sums of semigroups.  

Note that (see [30]) though a consecutive repetition of standard ordinal 

and horizontal sum constructions is covered by the lattice-based sum 

approach, the opposite is not true. First of all, the lattice-based sum can 

deal also with unbounded posets what is not the case of horizontal sums. 

Next, the consecutive repetition of mentioned classical construction has 

impact on the structure of the lattice-ordered index set. These 

considerations would inevitably lead one into studying the expressive 

power of lattice-based sums. 
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APPENDICES 
 

Appendix A: Python code for test the associativity of Example 3.2 

Code:  

from itertools import combinations_with_replacement 

from sympy.abc import a,b,c,d 

 

# Functions definations 

T1 = {    (0,0):0, (0,d):0, (0,a):0, (0,b):0, (0,c):0, (0,1):0, 

(d,0):0, (d,d):d, (d,a):d, (d,b):d, (d,c):d, (d,1):d, (a,0):0, 

(a,d):d, (a,a):a, (a,b):d, (a,c):a, (a,1):a, (b,0):0, (b,d):d, 

(b,a):d, (b,b):b, (b,c):b, (b,1):b, (c,0):0, (c,d):d, (c,a):a, 

(c,b):b, (c,c):b, (c,1):c, (1,0):0, (1,d):d, (1,a):a, (1,b):b, 

(1,c):c, (1,1):1} 

def is Associative(T,args=[0,d,a,b,c,1]): 

assert len(args) >2 

for perm_i in combinations_with_replacement(args,3): 

        if T[(perm_i[0],T[(perm_i[1],perm_i[2])])] != 

T[(T[(perm_i[0],perm_i[1])],perm_i[2])]: 

            return False, perm_i 

    return True, None 
 

def main(): 

    print is Associative(T1) 
 

if __name__==”__main__”: 

    main() 

Output:  

(False, (a, c, c)) 
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Appendix B: Python code for test the associativity of Example 3.4 

Code: 

from itertools import combinations_with_replacement 

from sympy.abc import x,b,c,d 
 

# Functions definations 

T1 = {   (0,0):0, (0,c):0, (0,d):0, (0,b):0, (0,x):0, (0,1):0, 

(c,0):0, (c,c):c, (c,d):0, (c,b):c, (c,x):c, (c,1):c, (d,0):0, 

(d,c):0, (d,d):0, (d,b):d, (d,x):0, (d,1):d, (b,0):0, (b,c):c, 

(b,d):d, (b,b):b, (b,x):c, (b,1):b, (x,0):0, (x,c):c, (x,d):0, 

(x,b):c, (x,x):x, (x,1):x, (1,0):0, (1,c):c, (1,d):d, (1,b):b, 
(1,x):x, (1,1):1} 

def is Associative(T,args=[0,x,b,c,d,1]): 

    assert len(args) >2 

    for perm_i in combinations_with_replacement(args,3): 

        if T[(perm_i[0],T[(perm_i[1],perm_i[2])])] != 

T[(T[(perm_i[0],perm_i[1])],perm_i[2])]: 

            return False, perm_i 

    return True, None 

def main(): 

    print is Associative(T1) 

if __name__=="__main__": 

main() 

Output:  

(True, None) 
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 الملخص باللغة العربية
 

هى نوع خاص من عمليات التجميع التى تكون  الترتيب الشبكى المحدودعمليات التجميع الدامجة على 

مثل المنطق الضبابى، والأنظمة الخبيرة، والشبكات العصبية، واستخراج  مفيدة فى مجالات كثيرة

إلى فصل عمليات  وعمليات أخرى كثيرة تنتمى T. العمليات من النوع الغامضالبيانات، ونمذجة النظام 

هى  فترة الوحده. واحده من الطرق النموذجية فى بناء عمليات التجميع الدامجة على التجميع الدامجة

ى الترتيب عل غالبا  ، طريقة الجمع الخطى تفشل فى العموم . كما لوحظ سابقا،طريقة الجمع الخطى

، حديثا تم إقتراح طريقة جمع جديدة تسمى الجمع المعتمد على وبناءا  على الملاحظة الأخيرة. الشبكى

فى . لتركيز على الترتيب سواء كان جزئيا  أو شبكيا  الترتيب الشبكى. فى هذه الطريقة المقترحة كان ا

 بناء إقتراح طرقالمحدود، تم إعتمادا  على طريقة الجمع المعتمد على الترتيب الشبكى  ،هذه الرسالة

 uninormsو  nullnormsالعمليات  أهم وأشهر عمليات التجميع الدامجة، ألا وهى جديدة لتكوين

بتطبيق طرق البناء الجديدة لبناء العديد من العائلات الجديدة من  قمنا، بعد ذلك على الترتيب الشبكى.

nullnorms  وuninorms  طريقة جديدة الحصول على  تموكنتيجة ثانوية، . الترتيب الشبكىعلى

 . الترتيب الشبكىعلى  t-conormsو  t-norms لتكوين العمليات

على  idempotent nullnorm طريقة جديدة لتكوين العملية على علاوة على ذلك، تم الحصول

 الترتيب الشبكى.

 فصول كالتالى:  ستةوقد إشتملت هذه الرسالة على  

الفصل على مقدمة مختصرة عن موضوع الرسالة والدوافع وراء هذه البحث  ايشمل هذ الفصل الأول:

 والهدف من ورائه مع عرض لمحتويات الرسالة.

يقدم هذا الفصل لمحة مختصرة حول طريقة الجمع المعتمد على الترتيب الشبكى فى  الفصل الثانى:

 والترتيب الشبكى. تكوين الترتيب الجزئى

عمليات التجميع الدامجة من تعريفات أهم وأشهر فصل دراسة إستقصائية حول يقدم هذا ال الفصل الثالث:

 صائص وكذلك طرق التكوين المختلفة على الترتيب الشبكى المحدود.وخ

ومن خلالها تكوين العملية  nullnormلتكوين العملية الطرق المقترحه  يقدم هذا الفصل الفصل الرابع:

idempotent nullnorm ين لعمليتوكذلك اt-norm  ،t-conorm .على الترتيب الشبكى 
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ومن خلالها تكوين  uninormلتكوين العملية  الطرق المقترحه يقدم هذا الفصل الفصل الخامس:

 على الترتيب الشبكى المحدود t-conormوكذلك  t-normو  idempotent uninormالعمليات 

 الموضوع.وكذلك التحسينات التى يمكن عملها مستقبلا فى هذا 

تم الحصول عليها في هذه الرساله والأعمال المستقبلية : يشمل هذا الفصل النتائج التى السادسالفصل 

  المقترحة.

 وفى نهاية الرسالة يوجد قائمة بالمراجع وعدد من الملاحق.

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 ونتائجة الشبكى الترتيب على المعتمد الجمع عن

 دامجة تجميع عمليات إنشاء على

 الرسالة مقدمة من

 خطاب  إبراهيم المهندس / محمود عطيه محمود

 بكالوريوس الهندسة والتكنولوجيا فى الهندسة الكهربية

 

ة فى الرياضيات يماجستير العلوم الهندس كجزء من متطلبات الحصول على درجة

 الهندسية  

 

 تحت اشراف

 
  أ.د / على نصر الوكيل  أ.م.د / معتز صالح الزكى

 أستاذ الرياضيات الهندسية المساعد

 ة ــــــة الهندســــكلي

  دمياطجامعة 

 المتفرغغير أستاذ الرياضيات الهندسية

 كلية الهندسة ببنها 

 جامعة بنها 
 

 

 2019بنها 

 

 جامعة بنها

ببنهاكلية الهندسة   

 قسم العلوم الهندسية الأساسية


