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ABSTRACT

Associative aggregation operators on bounded lattices are special
aggregation operators that have proven to be useful in many fields like fuzzy
logics, expert systems, neural networks, data mining, and fuzzy system
modeling. Nullnorms, uninorms, t-norms, t-conorms, and many other
operations all belong to the class of associative aggregation operators. One of
the typical constructions for associative aggregation operators on the unit
interval [0,1] is the ordinal sum construction. As observed, in general, an
ordinal sum construction may fail on a general bounded lattice. Motivated by
the last observation, a new sum-type construction called lattice-based sum has
been recently introduced by El-Zekey et al. [30]. In this thesis, based on the
lattice-based sum of (bounded) lattices indexed by a (finite) lattice-ordered
index set, new methods for constructing nullnorms and uninorms on bounded
lattices, which are lattice-based sums of their summand sublattices, are
developed. Subsequently, the obtained results are applied for building several
new nullnorm and uninorm operations on bounded lattices. As a by-product,
the lattice-based sum constructions of t-norms and t-conorms obtained by
El-Zekey [31] are obtained in a more general setting where the lattice-ordered
index set need not be finite and so-called t-subnorms (t-subconorms) can be
used (with a little restriction) instead of t-norms (t-conorms) as summands.
Furthermore, new idempotent nullnorms on bounded lattices, different from
the ones given in [16], have been also obtained. We point out that, unlike [16],
in our construction of the idempotent nullnorms, the underlying lattices need

not be distributive.
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CHAPTER ONE

INTRODUCTION



Chapter one
Introduction
1.1 General

Associative aggregation operators on the unit interval are special
aggregation operators that have proven to be useful in many fields like
fuzzy logics, expert systems, neural networks, data mining, and fuzzy
system modeling. t-norms, t-conorms, uninorms, nullnorms and many
other operations all belong to the general class of associative aggregation
operators (see e.g., [10]).

Associative aggregation operators have been also studied on some more
general structures, for example, bounded partially ordered sets and
bounded lattices, stimulating some investigations in topology and logic.
One of typical constructions for associative aggregation operators on the
unit interval is the ordinal sum construction. There were several attempts
to generalize this construction method considering a general bounded
lattice. As observed (see e.g., [67]), in general, an ordinal sum

construction may fail on a general bounded lattice.

Inspired by the last observation, a new sum-type construction, called
lattice-based sum, has been recently introduced [30]. It is a generalization
of the ordinal sum technique. This is done by allowing for lattice-ordered
index set instead of linearly ordered index set. The aim of the present
research is to propose new methods, based on the lattice-based sum, to
construct various associative aggregation operators on bounded lattices

such as t-norms, t-conorms, uninorms and nullnorms.



1.2 Problem statement

In recent years, several methods for constructing new associative binary
operations on the unit interval from given associative binary operations
were proposed, all resembling, yet differing from the ordinal sum of
t-norms. There have been several attempts to generalize the ordinal sum
construction considering a general bounded lattice (see e.g., [34, 56, 57,
65, 67]), inspired first by Goguen’s proposal to consider fuzzy sets with
membership values from bounded lattices. However, these methods have
long been blamed for their limitations in constructing new associative
aggregation and their inability to cope with a general bounded lattice. On
one hand, as observed in [67], ordinal sum construction may not work on
bounded lattices. On the other hand in [67], there exist ordinal sum
t-norms on bounded lattices which are not an ordinal sum of some of their
sublattices. Summarizing, there is a need for a new sum-type construction
generalizing the ordinal sum construction and coping very well with
associative aggregation operators on general bounded lattices. One
possibility is the lattice-based sum based on lattice-ordered index set
[30]. Note that, in [30], the focus has been on lattice-based sums of either
posets or lattices as summand structures only. In this thesis, we will
investigate and develop some new methods, based on the lattice-based
sum approach, for constructing various associative aggregation operators

on bounded lattices.



1.3 Objectives

The long-term goal of the research is to develop general methods, based
on the lattice-based sum scheme to construct various associative
aggregation operators on bounded lattices such as t-norms, t-conorms,
uninorms and nullnorms. The result of this study would open new aspects
for the investigation of aggregation functions on bounded lattices. It
would also be useful in obtaining associative operations suitable for

human thinking/evaluation, in several applications.

1.4 Thesis outlines

This thesis is organized in six chapters as follow:

Chapter One: Presents a brief introduction on the subject of the thesis,
the objectives, and the motivations.

Chapter Two: Shows an overview of the lattice-based sum technique for
building new posets and lattices from given ones.

Chapter Three: Presents a literature survey on the most important
associative aggregation operators, their definitions, properties, and
different construction methods on bounded lattices.

Chapter Four: Contains our proposal for the construction of nullnorms
as well as idempotent nullnorms, t-norms and t-conorms on bounded
lattices.

Chapter Five: Contains our proposal for the construction of uninorms as
well as idempotent uninorms, t-norms and t-conorms on bounded lattices.
Chapter Six: Summarizes the major results of this study and provides
recommendation for future work.

The published papers from this thesis are [33] for nullnorms and [32] for

uninorms.



CHAPTER TWO
LATTICE-BASED SUM OF BOUNDED
LATTICES



Chapter two
Lattice-based sum of bounded lattices

2.1 Introduction and preliminaries

In the literature, there were several methods on how to build new ordered
structures from simpler ones such as the disjoint union of ordered
structures [19], the ordinal sum of posets in the sense of Birkhoff [5, 67]
(it is also referred to as linear sum of posets [19]). The horizontal sum of
bounded posets [5, 19] and the lattice-based sum of posets and lattices
[30].

As observed in [30], the lattice-based sum technique generalized the well-
known ordinal sum of posets in the sense of birkhoff by allowing for
lattice-ordered index set instead of linearly-ordered index set. It is
pointed out in [30] that the lattice-based sum technique extends also the

horizontal sum of bounded posets based on unstructured index set.

In this chapter, we review the lattice-based sum technique for building
new posets and lattices from simpler ones. We start by some concepts

concerning posets and lattices.

Definition 2.1: ([5], [19])
Let L be a set, an order (or partial order) on L is a binary relation < on L

such that for all x,y,z € L,

L x<x (Reflexive)
. x<yandy <ximplyx =y (Antisymmetric)

. x<yandy<zimplyx <z (Transitive)



A set L equipped with an order relation < is said to be a partially ordered

set (Poset for short).

Definition 2.2: ([5], [19])
Let L be an ordered setand let S < L. Anelement x € L is an upper bound

of Sifs<xforalls €8S.

Definition 2.3: ([5], [19])
Let L be an ordered set and let S € L. An element x € L is a lower bound

of Sifs>xforalls €8S.

Definition 2.4: ([5], [19])
Let L be an ordered set and let S < L. The set of all upper bounds of S is
denoted by S* and the set of all lower bounds of S is denoted by S,

defined as follow
St={x€eL|(Vs€S)s<x} and S' ={x € L|(Vs €S) s = x}

Definition 2.5: ([5], [19])
If S* has a least element x, then x is called the least upper bound of S,
dually, if S' has a greatest element x, then x is called the greatest lower

bound of S. These two elements are obviously unique for each S.

The least upper bound of S is sometimes called supermum of S and is
denoted by Sup S. The greatest lower bound of S is also called infimum
of S and is denoted by inf S . We write x vV y (reads "x join y") in place
of sup{x,y}; when it exists and x Ay (reads "x meet y") in place of

inf{x, y}; when it exists.



Definition 2.6: ([19])

Let L be an ordered set. Then L is a chain if, for all x,y € L , either
x <y ory<x (that is, if any two elements of L are comparable).
Alternative names for a chain are linearly ordered set and totally ordered

set.

Definition 2.7: ([5], [19])
Let L be a non-empty ordered set. If x vy and x Ay exist for all

x,y € L, then L is called a lattice.

Definition 2.8: ([5], [19])
Let L be a lattice and @ = M < L. Then M is a sublattice of L if for all
a,b € M impliesaAbeMandaVvb € M.

Definition 2.9: ([5], [19])
A bounded lattice is a lattice (L, <, L, T) which has the top and bottom
elements written as: T and L, respectively, that is, there exist L, T € L

suchthat L< x < T, forall x € L.

Definition 2.10: ([5], [19])
Let (L,<,1,T) be a bounded lattice and leta,b € L. If a and b are

incomparable (i.e., a £ band b £ a), we write a || b.

Definition 2.11: ([5], [19])
Let (L,<,L,T) be a bounded lattice and leta,b € L, wherea < b. A

subinterval [a, b] of L, is a sublattice of L defined as
[a,b] = {x € Lla < x < b}

Similarly, la,b] = {x € Lla < x < b}, [a,b[={x € Lla < x < b},
la,b[={x € Lla < x < b}.



Example 2.1:

All ordered structures in Figure 2-1 are examples of bounded lattices.

1 a1
1
C
C a S
O al Db ‘b
b
0 0 -0

Figure 2-1 Bounded lattices Examples

Definition 2.12: ([5])
A lattice (L, <) is a distributive lattice if it satisfies one (or, equivalently,
both) of the distributive identities
i) xA(yvz)=xAy)V(xAz)
i) xviAz)=xVy)A(xVz)
forall x,y,z € L.
It has been shown in [5] that in a distributive lattice, for all x € L, if

aANx=aAyand aVx =aVy,thenx =y.

2.2 Lattice-based sum of bounded posets

In this section, we review the lattice-based sum technique for building
bounded posets from the given ones. First, we would like to list all
standard customary notations when we deal with lattice-based sums, as

follow:

(A, E) denotes a finite lattice-ordered index set in which each two element
subset {a,f} has an infimum denoted by inf{a, f}, and a supermum

denoted by sup{a,f}. For each a € A, (Ly <4 Lo To) denotes a



bounded partially ordered set (poset) with a top element T, and a bottom
element L1, for somea € A. Lowercase Latin letters (e.g. "x","y"
and "z") are used as variables ranging over the elements of L,, and
lowercase Greek letters (e.g. "a","S" and "y") are used as variables
ranging over the elements of A. If «,8 € A such that « C S buta # S,
then we will write « = . The cardinality (the number of elements) of a

set L will be denoted by |L].

Remark 2.1:

In [30], a lattice-ordered index set need not be finite and each summand
poset need not be bounded. But, in this thesis, and from a practical point
of view, we restrict our consideration to finite the lattice-ordered index

set, and to bounded summand only.

Definition 2.13: ([30])

Consider a finite lattice-ordered index set (A, ). The A-sum family is
a family of bounded posets {(Lg, <gu Lo Ta)aea that satisfies the
following: for all a,f € A with a # f the sets L, and Lg are either

disjoint or satisfy one of the following two conditions:

i) LgNLg={xqp} witha = 5, where x,z is both the top element
of L, and the bottom element of Lg and where for each € € A with
a = e we have L, = {xqp} and for all 6,y € A with § |l y,
6 = p and @ = y we have Ls = {ys,} or L, = {Zs,} where ys, is
the top element of Lifs,; and zs, is the bottom element of
Lsupsivy-
i 1< |LaﬂLﬁ| < 2witha |l 8, and for each x,3 = Lo N Lg, Xap 1s

the top element of both L, and Lg and the bottom element of



Lsup(a,p}> OF Xqp is the bottom element of both L, and Lg and the

top element of L, ¢4 -

Note that, the A-sum family in Definition 2.13 where referred to as the
A-sum family of bounded posets while the A-sum family of bounded
lattices for those whose all underlying bounded posets L, are bounded

lattices was denoted by ((L“'A“’V“))ae A where A, and V, are the meet

and join operations on L, respectively.

Definition 2.14: ([30])
Let (A/E) be a finite lattice-ordered index set and
let {(Ly, <a» Lo Ta)laea be a A-sum family. The lattice-based sum
Duenr Lo <ar Lo To) is the set L = Ugepl, equipped with the order
relation < defined by:

x <y ifandonly if

Ja € Asuchthatx,y € Lyandx <, y
or (2.1)

Ja,p € Asuchthat (x,y) € Ly X Lganda =
This type of lattice-based sum where referred to as lattice-based sum of

bounded posets.

Theorem 2.1: ([30])
With all assumptions of Definition 2.14, the lattice-based sum

(L,<, L,T) =@ uen (Lay < Lo To) is a bounded partially ordered set.

Note that, the strategy just described focuses on the union of the carriers
and an order consistent with both the order of the underlying posets and
the order of the lattice-ordered index set. Thus, the order relation for
elements from different summand carriers is inherited from the lattice-

ordered index set.
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Remark 2.2:

As shown in [30], if the lattice-ordered index set in Definition 2.14 is
a chain, then the lattice-based sum reduces to the ordinal sum, i.e., we
obtain the ordinal sum of posets in the sense of Birkhoff, in which any

two posets overlap in at most one point (see [5] and [67]).

Remark 2.3:
The lattice-based sum in Definition 2.14 extends also the horizontal sum

of bounded posets as we can see in Proposition 2.1.

Recall that a bounded poset (X, <, L, T) is called a horizontal sum of the
bounded posets ((X;, <;, L, T))iEIif X = Ui X; with X; nX; = {1, T}
whenever i # j, and x <y if and only if there is an i € I such that
{x,y} S X;and x <; y.

Proposition 2.1: ([30])
Let (L, <, 1, T) be a bounded poset. Then the following are equivalent:

i) (L,<LT) is a horizontal sum of the bounded posets
(Ly<u L D).,

i)  (L,<,L,T) is a lattice-based sum of the bounded posets
((La, O I T))aEA’ where (A, E) is the lattice in which A is the
set I with two more elements L, and T, such that L, = {1} and
L, = {T} and the partial order E is defined on A as:

foralla €A, Lp\E aand a E T,.
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Example 2.2:

Consider the lattice-ordered index set (A, E) in Figure 2-2. Then each of
the families associated with the structures in Figures 2-3 and 2-4 forms
a A-sum family of bounded posets. Hence each of these structures is

a lattice-based sum of bounded posets.

JA

A

Figure 2-2 The lattice (4, E) of Example 2.2

O

Figure 2-3 The A-sum family Figure 2-4 The A-sum family
1 of Example 2.2 2 of Example 2.2
Remark 2.4:

In Figure 2-3, we have L, N Lg = {x4p}, where x, is the top element of
both L, and Lg and the bottom element of Lg,pnep Where

sup{a, B} = T,. This satisfies condition (ii) in Definition 2.13. Also, in
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Figure 2-4, we have Ly N L, , = {x,}, where xg, is the top element of

L,, and the bottom element of Lz and for L,c 6= f we have

A
Ls = {xg,} which is a singleton poset. This satisfies condition (i) in

Definition 2.13.

Example 2.3:

Consider the lattice-ordered index set (A,E) in Figure 2-5. Then the
family of bounded posets associated with the structure in Figure
2-6 is not a A-sum family because L, N Lg = {xqp} With x5 = T, =1,
6 © B,a =y butneither Ls = {Tings5,1} NOr Ly, = {Lsupis,1}- Hence the
structure in Figure 2-6 is not a lattice-based sum for the lattice-ordered
index set of Figure 2-5 and for the family of bounded posets of Figure
2-6. The main reason is that the order relation is not consistent with the
order of the index set, since for x € Ls and y € L,, we have x < y while
the only elements § and y in the index set associated with x and y,
respectively, are incomparable elements in A. a slight modification is by
putting Ls = {Tings,3} and hence we get the A-sum family of bounded
posets associated with the structure in Figure 2-7 in which the order
consistency holds, such that, for x € Ls and for y € L, we have x <y,
x €LsNL,, andy € L, and hence there exist L, y € A associated with

x and y, respectively, such that L = y.
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Figure 2-7 A-sum family of
Figure 2-6 Not a A-sum family Example 2.3

For more illustrative examples, we refer to [30].
2.3 Lattice-based sum of bounded lattices

In the previous section, we recalled the main results concerning the
lattice-based sum of bounded posets supported by some examples for
clarification. In the current section, we will recall the main results

concerning the lattice-based sum of bounded lattices.
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Definition 2.15: ([30])

Given a lattice-ordered index set (A,E) and a A-sum
family {(Ly, <a)}aen X € Ugea Lo- We say that an element a* € A is
a maximal (minimal) index of x if a* is a maximal (minimal) element of
the set I, = {a € A|x € L,}. Denote by I3 and I™™, respectively, the

set of all maximal and minimal indices of x.

Example 2.4:
Obviously, if {(Lyg, <g)}aea is @ A-sum family with finite lattice-index
set A, then, for all x € Ugep Ly, the set I, = {a € Alx € L,} contains

maximal and minimal elements.

Note that, given a A-sum family {(Ly, <4)}aea and x,y € Ugep Lg With
x #y,wewritex |l y, if forall a,p € Asuchthatx € L, and y € Lg we
have a || . Also, we write x |, v if x,y € L, for some a € A such that
x ¥,y andy £, x. Obviously, x and y are incomparable if x || y or

x |l y for some a € A.

Lemma 2.1: ([30])

Let (A,E) be a finite lattice-ordered index set and let
{(Lew<a Lo Ta)laea be A-sum family of bounded posets. If
X,Y € Ugen Ly With x || y, then

|) For all aq, Ay € I,Tcnax and 31,32 € I;,nax, Til‘lf{a’1.ﬁ1} = Tinf{az,ﬁz}'
||) For all aq, Ay € I,Tcnin and ﬁllﬁZ € I;,nin, J‘SUp{(Xl,ﬁl}:J‘SUp{a’z,ﬁz}‘
Example 2.5:

Consider the lattice-ordered index set (A, E) in Figure 2-8 and the family

associated with the structure in Figure 2-9. It is easy to check that the
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family in Figure 2-9 is a A-sum family. Let x be the top of Lg,, v be the
top of L, and z be the top of L. Then:

i) Itis obvious that x || y where I,, = {f,,6,} and I,, = {a;, a3, 63}.
For 35,8, € I, and a,,63 € I, (note that B, and a, are not
maximal), we have,

Tinf (8,653 = Ty # Tay = Tinf(6,a,)
Of course (see Lemma 2.1), if we replace a, by the maximal a;
and replace 8, by the maximal §,, it will render the equality, such
that, in this case, we have
Tinf(6,,653 = T8, = Tinf(8,,as}
i) For x and y as described above,
inf {x, ¥} = Tinf (5,65} = T, = Tinf (8,03}
where a; and §5 are maximal indices of y while &, is the maximal
index of x. Although,
Tinf {8,653 = Tp, = Tinf {Bras)>
where [, is not maximal, we see that

inf {x, ¥} # Tinf (8,65} = Tinf (Bpas}

Figure 2-8 The lattice (4, E) of Example 2.5
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Figure 2-9 The A-sum family of Example 2.5
Remark 2.5:

As pointed out from [30], the consecutive repetition of standard ordinal
and horizontal sum constructions is covered by the lattice-based sum
approach, but the opposite is not true, as we can see in the obtained A-sum
family in Figure 2-9, although this family is a A-sum family, but it is
impossible to describe this family as repetition of ordinal and horizontal

sums. For more details, we refer to [37, 41, 69].

Definition 2.16: ([30])

Let (A, ) be a finite lattice-ordered index set and let {(Lg,AxVa)laen
be a A-sum family of bounded lattices. Put L = U,ep L,. FOr every
x € L, denote by II** and I™™ the set of all maximal and minimal indices

of x, respectively and define the binary operations A and v on L by:
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XNy if (x'y)ELaXLou

X if (x,y) €Ly XLgand a & f,

XNy = : (2.2)
y if (x,y) €Ly XLgand f & a,
Uinf{a*,ﬁ*} if xly,a® € I*** and , B~ € IJ***.

and
Ifxvay if (x,y) €Ly X Ly,
v _43’ if (x,y) €Ly XLgand a & f, 23)
VY=V« if (x,y) €Ly XLgand f & a, :

Llsup{a*,ﬁ*} if x |y, . € "™ and , B, € ™

Then (L,A,V) is the lattice-based sum of all {(L,,Ag,Ve) }aen. This type of

lattice-based sum was referred to as lattice-based sum of bounded lattices.

Theorem 2.2: ([30])
With all assumptions of Definition 2.16 the lattice-based sum

(LAV) =@ gen (LaNasVe) is a bounded lattice.

Remark 2.6:

Given a lattice-based sum (L,A,V) =@ gen (LaAaVe)- The partial order
relation < on the lattice L obtained by setting x < y in L if and only if,
x Ay = x coincides with the partial order relation given in Definition
2.14. One obtains the same partial order relation from the given lattice by

settingx < yinLifandonlyif,xvy =1y.



CHAPTER THREE

ASSOCIATIVE AGGREGATION
OPERATORS ON BOUNDED LATTICES
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Chapter three
Associative aggregation operators on bounded lattices

3.1 Introduction and preliminaries

The concept of aggregation has been introduced in [4, 10, 40] as
a process of combining several input values into a single output and the
numerical function performing this process is called an aggregation
function (it is also called aggregation operator, both terms are used
interchangeably in the existing thesis). Aggregation functions are widely
used in pure and applied mathematics, computer and engineering
sciences, economics and finance, social science as well as in many other
applied fields of physics and natural sciences. Thus, a main characteristic
of the aggregation functions is that they are used in a large of areas and

disciplines.

If the number of input values to be aggregated is fixed, sayn, an
aggregation function is a real function of n variables. This is still a too
general topic. Therefore, in [4, 10, 40] the considerations regarding inputs
as well as outputs are restricted to some fixed interval [a, b] € [0, 0],

in particular [0,1].

One of the most important classes of aggregation operators on the unit
interval is the class of associative aggregation operators. Obviously, there
exist multiple associative aggregation operators on the unit interval but
the most important and popular ones are the triangular norms, triangular

conorms, uninorms and nullnorms (see e.g., [4, 10, 40]).

Stimulating some investigations in topology and logic, associative

aggregation operators have been also studied on more general structures
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such as bounded partially ordered sets and bounded lattices (see e.qg., [22,
23, 53, 60, 72]). Therefore, we aim in this chapter to give a survey on the
theory of the mentioned associative aggregation operators on bounded
lattices.

The general aggregation operator introduced firstly to act on the unit
interval in [4, 10, 40] and then on any bounded lattice in [23, 53, 60] as

follow

Definition 3.1: ([23, 53, 60])
Let (L, <,1,T) be a bounded lattice, and n € N be fixed. A mapping
A: L' — L is called an n-ary aggregation function on L whenever it is
increasing,

A(x) < A(y) wheneverx < y(i.e.x; < y1,-., %, <¥y,) (3.1)
and it satisfies boundary conditions

A(L,...,1) =LA(T,....T) = T. (3.2)
A mapping B: U,ey L™ — L is called an extended aggregation function on
L whenever B | L™ (B restricted to L™) is an n-ary aggregation function on
L foranyn € N.
Remark 3.1:
If L = [0,1] is equipped with the standard ordering of reals, Definition 3.1
turns into the classical definition of an aggregation function on the unit
interval [4, 10, 40].

The monotonicity in all arguments and preservation of the bounds in
Definition 3.1 are the two fundamental properties that characterize
general aggregation operators. If any of these properties fails, we cannot
consider the function A as an aggregation operator, because it will provide
inconsistent output when used. All other properties leading to useful

subclasses of aggregation operators as we can see in Definition 3.2.
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Definition 3.2: ([23, 53, 60])

Let A be an aggregation operator on a bounded lattice (L, <, L, T),

i) Aissaid to be associative if
A,y ooy Xpy vey X)) = AZ(Ak(xl, ey X10), A (X315 ...,xn))
foralln>2,k=1,..,n—1andx; €L (i =1,..,n).

i)  Aissaid to be commutative if

A(xy, oy Xn) = A(Xr(1)s s X(m))-
for allne N*, x; e L(i=1,..,n) and for all permutations
n(1),...,mt(n) of {1, ...,n}

iii) A hasaneutral elemente € L if for all n > 2 and
x;€L(i=1,..,n),ifx, =eforsomek € {1, ..,n}, then

AQxq, ey X)) = AQXY, oy X1y X1 oo s Xpp) -
Iv)  Anelement a € L is called a zero element (annihilator) of A if
VX{, .., Xy EL:a € {xq,..,x,} then A(xq, ..., x,) = a.

v)  Anelement x € L is called an idempotent element of A whenever
A(x, ...,x) = x. Therefore, A is called an idempotent aggregation
operator if each x € L is an idempotent element of A.

vi)  Ais called conjunctive whenever A(xy, ..., x,) < x; for all

i€{l,..,n}
vii) A is called disjunctive whenever A(xq,...,x,) = x; for all
ie{l,..,n}

Remark 3.2: ([53])

Note that for any bounded lattice (L,<,L1,T) a dual bounded lattice
(L%, <4, 14,74 can be introduced, where LY = L,x <% y if and only if
y<x, and 1%=T,T%=1. Evidently, any aggregation function

A: L™ — L on L can be considered also as an aggregation function on L%.
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Several properties of A on L are the same as those of 4 on L4 (namely, all
algebraic properties not linked to the orderings < and <%). However,
properties based on the ordering should be modified by the above duality

(for example, conjunctivity on L is equivalent to the disjunctivity on L%).

In the following, we will recall the definitions and properties as well as
construction methods for the most important associative aggregation
operators mentioned earlier on bounded lattices. In the sequel, without
loss of generality, we will restrict our consideration on the associative
aggregation operator A to two arguments, because due to the associativity,
A can be extended to a finite number of arguments. We start by triangular

norms and triangular conorms.

3.2  Triangular norms and triangular conorms

3.2.1 Basic definitions and properties

The triangular norms and triangular conorms were introduced by
Schweitzer and sklar [68] aiming at an extension of the triangle
inequality and following some ideas of Menger [58]. These operators
were studied in the framework of many-valued and fuzzy logics in
[1, 38, 39, 42, 43]. They were also studied by many authors in other
papers [2, 3, 52, 59]. Although the triangular norms and triangular
conorms were strictly defined on the unit interval, they were mostly
studied on bounded lattices [21, 22, 72].
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Definition 3.3: ([67])
Let (L, <, 1, T) be abounded lattice. The operation T: L? — L is called

a triangular norm (t-norm) if the following conditions are fulfilled for

allx,y,z € L:

i. TC,y)=T(,x) (Commutativity)
i. T(x,T(»,2)=T(T(y)z) (Associativity)
. T(x,z) <T(y,z)wheneverx <y (Monotonicity)
iv. T(xT)=x (Neutral element)

Definition 3.4: ([34])

Let (L, <, 1, T) be a bounded lattice. The operation S: L? — L is called
a triangular conorm (t-conorm) if it is commutative, associative,
increasing with respect to both variables and has a neutral element

le L.

Example 3.1:
There exist at least two t-norms and two t-conorms acting on any

bounded lattice L:

e TheminimumTL: L2 -» L, TL(x,y) = xAy.
e The drastic product T: L2 — L,

TE(x,y) = xANy if TeE{xy},
56 ) {J_ otherwise.

e The maximum Sk: L2 - L,SE(x,y) = x v y.
e The drastic sum S: 12 — L,

Sk(x,y) = xVy if Le{x,y}
(6 y) {T otherwise.
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Main properties:

The t-norm and t-conorm operations introduced in Definition 3.3 and

Definition 3.4, respectively, have the following properties on any
bounded lattice (L, <, L, T)

i)

iD)

For any t-norm T and any t-conorm S on L, the following
additional boundary conditions are satisfied
T(x,1)=T(Lx) =1, S, T)=8ST,x)=T
It means that L& L is acting as the zero elementof Tand T € L is
acting as the zero element of S.
If, for two t-norms T; and T, the inequality T;(x,y) < T,(x,y)
holds for all (x,y) € L?, then we say that T, is weaker than T,
(equivalent to T, is stronger thanT;) and we write T; < T,.
Similarly, in the t-conorm case if S; < S, then we say that S; is
weaker than S, (equivalent to S, is stronger than S;).
Due to the monotonicity of T, then for each t-norm T, and for each
(x,y)€L> we have both T(x,y)<T(x,T)=x and
T(x,y) <T(T,y)=y. Also, for all (x,y) € L\{L, T} we
trivially have T'(x, y) >1= T} (x,y) and hence, we have
TS<T<TE
It means that, the drastic product t-norm is the weakest t-norm and
the minimum t-norm is the strongest one. In a similar way and by
using the duality, in the t-conorm case, we have
Sk <S<Sh
The only idempotent t-norm T on L is the minimum T} and the

only idempotent t-conorm S on L is the maximum S%.
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Remark 3.3:
Note that, if L = [0,1] (i.e., L is the classical unit interval), then we

have the following:

i)  There exist uncountable many t-norms and t-conorms acting
on [0,1]. However, the following are the four basic t-norms and

t-conorms acting on [0,1] extracted from [52]

e Ty (x,y) = min(x,y), (Minimum)

e Tp(x,y)=x.y, (Product)

e T.(x,y) =max(x+y—10), (Lukasiewiz t-norm)
(0 if (x,y) € [0,1[3 .

* Tolxy) = {min(x, y) otherwise (Drastic

product)

o Sy(x,y) =max(x,y), (Maximum)

o Sp(x,y)=x+y—x.y (Probabilistic sum)

e S;(x,y)=min(x+y,1) (Lukasiewiz t-conorm)
(1 if (x,y) €]0,1]3, :

© Solny) = {max(x, y) otherwise. (Drastic

sum)
i)  Due to monotonicity of T and S, we have the following order
for the four basic t-norms and t-conorms on [0,1]

Ty <T, <Tp<Ty, Su<Sp<S,<Sp

3.2.2 Construction methods

There are many ways for constructing t-norms and t-conorms from
given ones on the unit interval such as Pseudo-inverse of monotone
functions, additive and multiplicative generators and ordinal sums
[52]. The latter is the most important one for this purpose. Since

t-norms are special compact semigroups (i.e., t-norms are binary and
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associative functions with neutral element 1), the concept of ordinal
sums in the sense of Clifford [17] provided a method to construct new
t-norms from given ones (similarly, for t-conorms by duality). There
are several papers concerning ordinal sums of t-norms (t-conorms) on
the unit interval, see e.g. [46, 47, 51, 52]. Stimulating some
investigation in topology and logic, the ordinal sum construction was
generalized on a general bounded lattices, see e.g. [15, 34, 56, 57, 65-
67], inspired first of all by Goguen’s proposal to consider fuzzy sets
with membership values from a bounded lattices. In the following we
will recall all attempts for constructing t-norms and t-conorms on

bounded lattices via the ordinal sum method.

Definition 3.5: ([66, 67])
Given a bounded lattice (L,<,L,T), a linearly ordered index
set(l,<;), a family of pairwise disjointed subintervals

of L, {Ja, bi[}ie; and a family of t-norms {Tl%Pd} — on the
corresponding intervals {[a;, b;]};c;. The operation T: L? — L defined
as follows:

Tlewbd(x, y) if (x,y) € [a;, b]?
T ) — ) ) vl 3.3
x,7) {x Ay otherwie. (33)

is called the ordinal sum of the family {T'%d} on L.

By duality, we can define the ordinal sum of t-conorms on bounded

lattices in the following way

Definition 3.6: ([66, 67])
Given a bounded lattice (L,<,1,T), a linearly ordered index

set (I,<;), a family of pairwise disjointed subintervals
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of L, {Ja;, b;[}ie; and a family of t-conorms {sl®’d} ~on the
corresponding intervals {[a;, b;]}ic;. The operation S: L? — L defined
as follow

slabd(x,y) if (x,y) € [ay, b;]?
= ) 4 v ’ 4
S(xP :V) {x \V y otheT'Wie. (3 )

is called the ordinal sum of the family {s'®:}._ on L.

Note that, if L = [0,1] (L is the classical unit interval) then the ordinal
sums T and S defined in Equations (3.3) and (3.4), respectively, are
reduced to the ordinal sum of t-norms and t-conorms on the unit
interval [52]. It has been shown in [52], that the ordinal sums T and S
are t-norm and t-conorm for any family of t-norms and t-conorms on
the unit interval, but as shown in [67], [34], the ordinal sums T and S
in Definition 3.5 and Definition 3.6 are not a t-norm and a t-conorm on
a general bounded lattice L, respectively. This can be seen in the

following example for ordinal sums T and S of one summand only.

Example 3.2:

Consider the bounded lattice (L,<,1,T) in Figure 3-1,
a subintervals [b, T] ={b,c, T} and [L,b] = {L,d, b]. The ordinal
sum of the t-norm Tgb'T] is the operator T defined by Equation (3.3)

which values are written in Table 3-1. Also, the ordinal sum of the

t-conorm S,[)l'b] is the operator S defined by Equation (3.4) which

values are written in Table 3-2. The ordinal sums T and S described
above are not a t-norm and a t-conorm on L, respectively, such that, if

we consider a, ¢ € L, then we have
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T(T(c,c),a)=T (Tgb’ﬂ (c,0), a) =T(b,a)=bAa=d,
T(C,T(c, a)) =T(c,cha)=T(c,a) =cAa=a.
Since d # a, T is not associative. Also, it is easy to see that a < c, but

we have

T(a,c)=aAc=a, T(cc)= Tlgb’T](C, c)=b

Sincea |l b (T(a,c) Il T(c,c) for a < ¢), T is not monotone.

Similarly, if we consider a,d € L, then we have

S(s(d,d),a) =S (5", a), a) —S(h,a)=bVva=c
S(d,S(d,a)) =S(d,dva)=5(d,a)=dVa=d.
Since ¢ # d, S is not associative. Also, it is easy to see that d < a, but

we have

S(d,d) = S5"X(d,d) = b, S(d,a) =dva=a

Since b || a, S is not monotone.

To save time and effort to test the associativity of T (similarly, for S)
of Example 3.2, the python code in appendix A can be used which give
the output “(False, (a, ¢, c¢))” to indicate that T is not
associative

ie. T(a,T(c, c)) # T(T(a,c),c)
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*

Figure 3-1 The lattice L of Example 3.2

Table 3-1 The operation T Table 3-2 The operation S
on L of Example 3.2 on L of Example 3.2
T|l|d|la|b|c]|T S|lllid|la|b|c]|T
S I T O O A e l|l|d|a|b|c|T
d|l|d|d|d|d]|d d|d|bla|b|c|T
all|d|a|d|a]|a alalala|c|c]|T
b|Ll|d|d|b|b|b b|b|b|lc|b|c|T
cll|d|la|b|b]|c clclclc|lc|c]|T
T|Ll|d|a|b|c|T T|T|T|T|T|T|T

As we can see in Example 3.2, the ordinal sum construction method
may not work to construct t-norms and t-conorms from given ones on

a general bounded lattice.

Note that, as shown in [65, 67], if the underlying bounded lattice L is
describable as ordinal sum of intervals, then for any family of t-norms
(t-conorms) on that intervals, the resultant ordinal sums T (S) will be
a t-norm (a t-conorm) on L. But the converse isn’t true in general, such
that (see Example 4.2 in [67]), there exist ordinal sum t-norms on

a bounded lattice L, although L isn’t an ordinal sum of intervals.
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Therefore, for necessary and sufficient conditions to be met to ensure
that the ordinal sums T and S in Equations (3.3) and (3.4) are,
respectively a t-norm and a t-conorm on a general bounded lattice, the
authors in [65, 67] have presented a good discussion. These conditions
are recalled in Theorem 3.1 for ordinal sum T only. The same results

for S can be obtained by duality.

Theorem 3.1: ([65, 67])
Consider some bounded lattice (L, <, L, T), some index set/, and
a family of pairwise disjoint subintervals {]a;, b;[}ie; of L. Then the

following are equivalent:

i)  The ordinal sum T:L? — L defined by Equation (3.3) is a t-
norm for arbitrary T(%:2id on [a;, b;].
i) Forall x € L and for all i € I it holds that
a) If x is incomparable to a;, then it is incomparable to all
u € [a;, b;.
b) If x is incomparable to b;, then it is incomparable to all
u €la;, b;].

Theorem 3.1 states that, if the underlying bounded lattice L is
describable as ordinal or horizontal sum of chains, then for any family
of t-norms (t-conorms) on such bounded lattice, the ordinal sums T and
S in Equations (3.3) and (3.4) are, respectively, a t-norm and a t-

conormon L.

Example 3.3:
Consider the bounded lattice (L,<,1,T) shown in Figure 3-1,
asubinterval [d, c] = {d, a, b, c}. Then, for any t-norm T¢I on [d, c],

T defined by Equation (3.3) is a t-norm onL. Also, for any
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t-conorm S1%¢l on [d, c], S defined by Equation (3.4) is a t-conorm
on L. The main reason is that, L is describable as ordinal sum of
intervals, i.e. L = [L,d] @ [d,c] & [c, T].

It is worth to be mentioned that, the conditions given in Theorem 3.1
do not seem very efficient to be used in order to prove whether
a specific ordinal sum T, with respect to a particular family of t-norms,
is a t-norm, because the ordinal sum T might be a t-norm even when is
not a t-norm for any family of t-norms, as we can see in the following

example which is extracted from [57].

Example 3.4:

Consider the lattice (L, <, 1, T) in Figure 3-2 and the ordinal sum T of
the t-norm T[], given by Equation (3.3), whose values are written in
Table 3-3. We see that [ L, b] does not satisfy the conditions given in
Theorem 3.1(ii), since x and b are incomparable, ¢ < x and ¢ €] 1, b].

Although, T is a t-norm, which can be easily checked.

Again, we can use the python code in appendix B for testing the
associativity of T of Example 3.4 which give the output “(True,

None)” to indicate that T is associative in all cases.
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-
" Table 3-3 The t-norm T on
’ , L of Example 3.4

T|L|c|d|b|x|T

d B N S e e e &

c c|Lljc|l|c|c]|c
d{lL|L|L|d|1l|d

€ blilcld | b|c|b
x|L|c|Ll|jc|x|x

Figure 3-2 The lattice L of T|Lllc|d|b|x|T

Example 3.4

[56] and [57] gave extra necessary and sufficient conditions to ensure
that an ordinal sum of t-norms is a t-norm on bounded lattices. It turned
out from [56] that, to check if an ordinal sum is a t-norm for any family
of t-norms, we only need to consider on each subinterval a drastic
t-norm (which is the simplest t-norm) and to verify if the new ordinal
sum is a t-norm.

Now, we need to recall all other attempts for constructing t-norms and
t-conorms on bounded lattices via ordinal sum technique. We start by

the constructions given in [34].

Theorem 3.2: ([34])

Let (L,<,1,T) be a bounded lattice and leta € L\{L, T}. If V is
a t-normon [a, T] and W is a t-conorm on [L, a], then the functions
T,:L?> - L and S;:L? — L are, respectively, a t-norm and a t-conorm

on L, where
V(x,y) if x,y €la,T|

Ti(x,y) = {x Ay if T€{xyl, (3.5)
XANyAa otherwise.
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and

W,y) ifxye€]lal
Si(x,y) =<xVy if Le{x,vy}, (3.6)
xVyVa otherwise.
In [15] another construction methods for t-norms and t-conorms from
given ones on bounded lattices have been presented. These
constructions are also based on one starting t-norm V and one starting
t-conorm W but it is different from the constructions methods in

Theorem 3.2, as we can see in Theorem 3.3

Theorem 3.3: ([15])
Let (L,<,L1,T) be a bounded lattice and leta € L\{L, T}. If V is
a t-norm on [a, T] and W is a t-conorm on [L, a], then the functions

T,:L? > L and S,: L? - L are, respectively, a t-norm and a t-conorm

on L, where
Vix,y) ifx,y€laT]
T(x,y) = {x ANy if Te{xy}, (3.7)
1 otherwise.
and
Wx,y) ifxy€]la],
S2(x,y) = {x Vy if Le{x,vy}, (3.8)
T otherwise.
Example 3.5:

Consider the bounded lattice (L,<,1,T) in Figure 3-1. Let

TIbT] = 7IP T gng glebl = gLl

5 - Itiseasy to check that the function

T, whose values are written in Table 3-4 is a t-norm on L for the t-norm
7271 ysing Equation (3.5) and the function S; whose values are

written in Table 3-5 is a t-conorm on L for the t-conorm S?1 using
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Equation (3.6). Also, the function T, whose values are written in Table
3-6 is a t-norm on L for the t-norm T2 ™ using Equation (3.7) and the
function S, whose values are written in Table 3-7 is a t-conorm on L

for the t-conorm S-?! using Equation (3.8).

Table 3-4 The t-norm T; on Table 3-5 The t-conorm S,
L of Example 3.5 on L of Example 3.5
T;|L|d|a|b|c|T SylLlld]la|b|c|T
B I O N N N S R e l|il|d|a|b|c|T
d | l|d|d|d|d|d d|d|bla|b|c|T
a|l|d|d|d|d]|a alalala|c|c]|T
b|l|d|d|b|b]|b b|b|b|lc|b|c|T
c|Ll|d|d|b|b]|cC clclclc|lc|lc|T
T|Ll|d|a|b|c|T T|IT|T|T|T|T|T
Table 3-6 The t-norm T, on Table 3-7 The t-conorm S,
L of Example 3.6 on L of Example 3.6
T,|L|d|a|b|c|T S, lLld|la|b|c]|T
1L 1LjL|L1l]L L|l|d|a|b|c|T
d | 1l|Ll|L]|L]|1l]|d d|d|b|T|b|T|T
a | L|1]|L|1l]1l]a al|la|T|T|T|T|T
b |L|L|[L|[b|b|b b |b|b|T|b|T|T
c |1l|1l|L|b|b]|c C|lc|T|T|T|T|T
T|l|d|a|b|c|T T|T|T|T|T|T]|T
Remark 3.4:

Given a bounded lattice (L, <, L, T). The operations T;,T,,S; and S,
just described in Theorems 3.2 and 3.3, are based on one starting
t-norm V acting on a subinterval [a, T] in the t-norm case, and one
starting t-conorm W acting on a subinterval [ L, a] in the t-conorm case.

That is, we cannot force T,,T,, S;and S, to coincide with
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a predescribed t-norm H on [L,a] and a t-conorm H on [a, T] and
expect that T; and T, are still at-norm and S; and S, at-conormon L,

respectively.

Uninorms
Basic definitions and properties

Uninorms on the unit interval are one of the most important associative
aggregation operators with neutral element e € [0,1] that generalize
t-norms and t-conorms operators. This generalization stems from the
location of the neutral element, such that, in the uninorm case, the
neutral element is any element laying anywhere on the unit interval
rather than at 1 as in the t-norm case or at 0 as in the t-conorm case.
This operators have been firstly introduced in [71]. They were also
studied on the unit interval by many authors in other papers, for
example, in [18, 20, 24, 27-29, 36, 44, 63, 64]. Recently, this operators
have been introduced on bounded lattices in [50], showing the
existence of uninorms on an arbitrary bounded lattice L with the neutral
element e laying anywhere in the bounded lattice L, using the fact that
the t-norms and t-conorms on arbitrary bounded lattice L always exist.
Our interest in the construction of these operations requires us to
mention that there were several methods for constructing uninorms on
bounded lattices introduced in [7, 11, 14, 50]. We will recall all of these
constructions after some concepts and properties concerning uninorms

on bounded lattices.
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Definition 3.7: ([50])

Let (L,<,1,T) be a bounded lattice. Operation U:L? — L is called
a uninorm on L if it is commutative, associative, increasing with
respect to both variables and has a neutral element e € L.

It is clear form Definition 3.7 that the t-norm and the t-conorm
operators are special cases of uninorm operator, such that, ife = T,

then it is the case of t-norm, also if e =L, then itis the case of t-conorm.

Definition 3.8: ([11])
Let (L, <, L1, T) beabounded lattice, e € L\{L, T}and U a uninorm on
L with the neutral element e.

i) U iscalled a conjunctive uninorm if U(L, T) =1.

i) U is called adisjunctive uninorm if U(L,T) = T.

Proposition 3.1: ([50])
Let (L, <, L, T) be abounded lattice, e € L\{L, T} and U a uninorm on

L with the neutral element e, then

i) Ty =Ulep:[L el = [Le]isat-normon [L,e].

ii) Sy =Ulgqmq:le, T]> = [e, T]isat-conormon [e, T].

Proposition 3.2: ([50])
Let (L,<,L1,T) be a bounded lattice, and let e € L\{L, T} and U

a uninorm on L with the neutral element e, then the following hold:

i) xAy<Ulxy)<xVyV(x,y)€e[LlLe]lx[e T]U]Je T] X
[1,e].
i) Ulx,y)<xV(x,y)€LXx][Le]
i) Ulx,y)<yV(x,y)€[Lle]xL.
iv) x<U(xy) V(x,y)€LX]JeT].
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V) y<U(xy V(x,y)€le T]xL.
3.3.2 Construction methods

On the unit interval, (see Figure 3-3), a uninorm U with neutral element
e is acting as a t-norm on [0, e]? and a t-conorm on [e, 1]?> while on
the remaining parts of the unit square, a uninorm is acting as averaging
aggregation function between the minimum and maximum operators.
It means that, we can construct a uninorm U on the unit interval [0,1]
by means of any t-norm T and any t-conorm S acting on [0,1] just
describe U on the rest of the unit square, for example, for any t-norm
T and any t-conorm S on [0,1], if we consider that
U(x,y) = min(x,y) for all (x,y) €[0,e] x[e,1] U [e,1] X [0, e],
then we obtain a uninorm U belonging to the general class of minimum
uninorms denoted by U, (see Figure 3-4 (a)). Similarly, if
U(x,y) = max(x,y) for all (x,y) € [0,e] X [e,1] U [e, 1] X [0, e]
then we obtain a uninorm U belonging to the general class of maximum

uninorms denoted by U,,,,, (see Figure 3-4 (b)).

In the case of bounded lattice (L, <, 1, T), we may have one or more
elements incomparable with e and hence the characterization of
uninorms on bounded lattices is different from given ones on the unit
intervals. In [49] a characterization of uninorms on bounded lattices
has been introduced by means of a t-norm T, a t-conorm S and four
symmetric aggregation functions H,, H,, H; and H, (see Figure 3-5).
But, as shown in [49], recalling the problems with constructing
triangular norms (conorms) on a bounded lattice by means of ordinal
sum approach, it is not surprising that we are not able to ensure the

existence of a proper uninorm U acting on a bounded lattice L, with
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a neutral element e € L \{L, T}. There exist several attempts to
construct uninorms on bounded lattices. We start by two constructions

given in [50].

min < U < max S

T min < U < max

Figure 3-3 The structure of uninorm on [0,1]

min S max S

T min T max

(a) (b)

Figure 3-4 (a) A member of U, , (b) A member of U4,
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Il H; H3 Hy
1

H, S H;
€

T H, H,
0 . L

Figure 3-5 The structure of uninorms on bounded lattices
Theorem 3.4: ([50])
Let (L,<,1,T) be a bounded lattice and lete € L\{L1, T}. If T, is
at-normon [L,e]? and S, is a t-conorm on [e, T]?, then the functions

Ur,:L? - L and Us,: L*> — L defined as follow

T.(x,y) if (x,y)€[Lel?
xXVy if (x,y)e[Le]lx(e,TlU(e, T]x[L el
Ur,(x,y) =3y ifxe[Lelyle, (3.9)
X ifye[Lelxle,
T otherwise.
and
(Se(x,y) if (x,y) € e, T]?,
XAy if (x,y)e[Le)x[e,T]U[e, T] X [L,e),
Us,(x,y) =1y if x€€le,T],yl e, (3.10)
x ifyeleTlxle,

1 otherwise.

are uninorms on L with neutral element e.

Another two construction methods have been introduced in [11] that
are different from the proposal given in [50]. We recall these

constructions in Theorem 3.5.
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Theorem 3.5: ([11])

Let (L, <,1,T) be a bounded lattice and lete € L\{L, T}. If T, is
at-normon [L,e]? and S, is a t-conorm on [e, T]?, then the functions
Ur,:L? - L and Us,: L*> — L defined as

! T.(x,y) if (x,y) € [L,e]?

y if xe[Lelyle,

= A1

UTZ(X,}’) x lny[J_,e],xll e' (3 )
kx Vy otherwise.

and

(Se(x,y) if (x,y) € e, T]?,

y if x€le, Tyl e,
Us (x,y) = 3.12
5, (67 ix ifyele,Tlxlle, (3.12)
XAy otherwise.

are uninorms on L with neutral element e.

Remark 3.5:
Given a bounded lattice (L, <, 1, T), then

i)  The uninorms Uy, and Us, cannot be used for constructing
idempotent uninorms on L, such that, if we consider the only
idempotent t-norm T on [L,e], then the corresponding
uninorm Uy, is not an idempotent uninorm having value T on
the domain (L\[L, e]?). The case of Us, is similar. However,
the uninorms Ur, and Us, can be applied to show the existence
of idempotent uninorms on L for any e € L\{l, T}.

i) The uninorms Ur, and Us, in Theorem 3.5 can be equivalently
defined by

T (x,y) if (x,y) €[Le]?

Ur, (x,y) = {H(x) V H(y) otherwise.
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_ (Se(x,y) if (x,y) € [e, T]?,
Us,(x,y) = {M (x) AM(y) otherwise.
where H, M: L — L are mappings given by
1 ifxe[le]
H(x) =
€ {x otherwise.
T ifx€leT]
M(x) =
<) {x otherwise.

Example 3.7:
Consider the bounded lattice (L,<,L1,T) in Figure 3-6. Let

T, = TH"*! on [L,e] and S, = ST on[e, T]. Then the operations
Ur,, Us,, Ur,and Us, whose values are written in Tables 3-8, 3-9, 3-10

and 3-11, respectively, are uninorms on L which are constructed using
Equations (3.9), (3.10), (3.11) and (3.12), respectively.

T

1

Figure 3-6 The lattice L of Example 3.7
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Table 3-8 The uninorm Uz, on L Table 3-9 The uninorm Us on L
of Example 3.7 of Example 3.7
U, |L|la|b|c|d|e|T U, |L]la|b|c|d|e|T
L |L|L|b|c|d|L|T L Ll LrlLlLlL
a |[L|L|b|c|d|a|T a |L|Ll|Ll|Ll|lal|ala
b |b|b|T|T|T|b|T b |L|L|L|L|b|b|b
c |c|lc|T|T|Tlc|T c |1LlLlL|L|Llclclc
d |d|d|T|T|T|d|T d |Llalblc|T|d|T
e |L|la|b|c|d|e|T e |L|la|blcld|e|T
T |T|T|T|T|T|T|T T |L|la|b|c|T|T|T
Table 3-10 The uninorm Uy, on Table 3-11 The uninorm U, on
L of Example 3.7 L of Example 3.7

Ur,|L|ja|b|c|d|e|T U,|L|la|b|c|d|e|T
L (L{L|b|c|d|L]|T S IS O B A
a |[L|L|b|c|d|a|T a |L|la|lalalal|a]|a
b |b|b|b|d|d|b|T b |L|ila|b|la|b|b|b
c |c|lc|d|c|d]|c|T c |l|lajalc|c|c|c
d |d|d|d|d|d|d|T d |Lla|b|c|T|d|T
e |[Lla|b|c|d|e|T e |L|la|b|c|d|e|T
T |T|T|T|T|T|T|T T |Lia|b|c|T|T|T

In [14], another two construction methods yielding uninorms on
bounded lattices have been presented but with some additional
constraints on the neutral elemente € L\{L, T} as we can see in
Theorem 3.6

Theorem 3.6: ([14])
Let (L, <, 1, T) beabounded lattice and fix e € L\{L, T}. Suppose that
xvy>eforallxlleandylleorxvylleforallx|eandy I e.

If T, is a t-norm on [, e], then the function Ur,: L* — L defined as



Te(x,y)
xXVy
UTS(X,_')/) =3y

.
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if (x,y) €[L,e]?

if (x,y) € A(e) UN, X N,,

if (x,y)€|[Ll,e]xN,, (3.13)
if (x,y) €N, x[L,e],

otherwise.

is a uninorm on L with neutral element e, where

A(e) =[Le]lx[e,T]U[e Tl x[Le], N,o={x€L|x |l e}

Theorem 3.7: ([14])

Let (L, <, 1, T) beabounded lattice and fix e € L\{L, T}. Suppose that

xAy<eforallx|leandylleorxAylleforallx|leandy | e.

If S, is a t-conorm on [e, T], then the function Us,: L* — L defined as

(Se(x,y)
XAy
US3(x’y) = y

Y

if (x,y) €le,TI?,

if (x,y) € A(e) UN, X N,,

if (x,y)€le, T] XN,, (3.14)
if (x,y) € No X [e, T],

otherwise.

is a uninorm on L with neutral element e, where A(e) and N, are as

described in Theorem 3.6.

Example 3.8:

i)  The bounded lattice L in Figure 3-6 is a positive example

satisfying constraints of Theorems 3.6 and 3.7, since

bvc=d>eforblleandc | e.

i)  The bounded lattice L in Figure 3-7 is a negative example of

Theorem 3.6, where, for a chosen neutral element e, constraints

of Theorem 3.6 are violated suchthatx Vz=k >eforx | e

andz || ewhile,yvm=ml efory|leandm | e.
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Figure 3-7 The lattice L of Example 3.8 (ii)
Consider the bounded lattice (L, <, L, T) in Figure 3-6 and let
T, =T on [Le] andS, =S™ on[e,T]. Then the
operations Ur, and Us, whose values are written in Tables 3-12
and 3-13, respectively, are uninorms on L which are

constructed using Equations (3.13) and (3.14), respectively.

Table 3-12 The uninorm Ur, on
L of Example 3.8 (iii)

U, |L]la|b|c|d|e|T
L (L|L|b|c|d|L|T
a |[L|L|b|lc|d|a|T
b |b|b|T|d|T|b|T
c |lclc|d|T|T|c|T
d |d|d|T|T|T|d|T
e |Lla|b|c|d|e|T
T | T|T|T|T|T|T|T
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Table 3-13 The uninorm Us, on
L of Example 3.8 (iii)

1 b

98

—H|lu || |SQ || X

dle lala |ls|a |- |S

Q Q| ||| |8Q

S| |Q|F|FH|a

—H|o |0 (|- |®
|||z |—|d

FIFFF|F[F|F
S S| S Q|||

Nullnorms

Basic definitions and properties

Nullnorms on the unit interval with zero element a € [0,1] are other
associative aggregation functions that generalize both t-norms and
t-conorms with the opposite behavior of uninorm, such that, they are
acting as t-conorms on [0,a]? and as t-norms on [a,1]%. These
operators have been firstly introduced on the unit interval in [54] and
[9]. In the literature, there are some other papers about nullnorms on
the real unit interval, for example, [25, 26, 55, 70].

These operators have been introduced on bounded lattices in [48],
showing the existence of nullnorms on bounded lattices with zero
element a € L\{L, T} using the fact that some t-norms and t-conorms
on an arbitrary bounded lattice L always exist.

Our interest in the construction of these operations requires us to
mention that there were several methods for constructing nullnorms on
bounded lattices introduced in [12, 13, 16, 35, 45, 48]. We will recall
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all of these constructions after some concepts concerning nullnorms on

bounded lattices.

Definition 3.9: ([48])

Let (L,<,1,T) be a bounded lattice. A commutative, associative,
non-decreasing in each argument function V:L? —» L is called
a nullnorm if there is an element a € L such that V(x, L) = x for all

x<aandV(x,T) =xforallx > a.

It can be easily derived that V(x,a) = a for all x € L. Thus, a is the

zero element of I/.

Proposition 3.3: ([48])
Let (L,<,L,T) be a bounded lattice, a € L\{L, T} and V a nullnorm

on L with zero element a. Then

i) Sy =Vl|Lape:[Lal®> > [L,a]isat-conormon [L,a].

ii) Ty =Vl|grpe:[a, T]> - [a, T]isat-normon [a, T].

Proposition 3.4: ([48])
Let (L,<,L,T) be a bounded lattice, a € L\{L, T} and V a nullnorm

on L with zero element a. Then the following hold

i) V(,y)=aV(x,y)€[Lla]lx[a T]U]la T]Xx[L, al.

i) a<V(,y V(xy) €la T]?Ula, T] X N;UN, X [a, T].
i) V(y) <aV(x,y)€[Lal?uU[l,al] X N;UN, X [L,a].
iv) V(x,y)<yV(x,y) €LX][aT].

v) V(x,y) <xV(x,y) €a T]X
vi) x<V(x,y)V(x,y) €L a] X
vii)  y<V(x,y)V(x,y) €L X[L,al

viii)  xVvy <V(x,y)V(x,y) € [Lal?

L.
L
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iX) V(x,y)<xAyV(x,y) € [a T]?

X) (xAa)ViyAa)<V(xy)V(x,y) €[L,al]xN,UN, x[L
,a]UN, X N,.

i) Vy)<&xkva)Alyva)V(x,y)€la T] XN, UN, X
[a, T]UN, X N,,.

3.4.2 Construction methods

Figure 3-8 show that a nullnorm with zero element a on the unit
interval is acting as t-conorm on [0, a]? and t-norm on [a, 1]? while on
the remaining parts of the unit square, nullnorms return as the output
the zero element a. It means that, for any t-norm T and any t-conorm
S on [0,1] we can obtain a unique nullnorm V (which is false in the
uninorm case) with zero element a € [0,1].

In the case of a bounded lattice (L, <, L, T), there may exist one or
more elements incomparable with the zero element a € L and hence
the structure of nullnorms on bounded lattices is different from the
given ones on the unit interval (see Figure 3-9). There exist many
attempts for constructing nullnorms on bounded lattices and we use the
following theorems to recall all of these constructions. We start by

three constructions given in [48].
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Figure 3-8 The structure of nullnorms on [0,1]

Ia yExsa |las ey sx |0 xy) <1
1

a T azpy) 2y
a

s a y<hy)<a
0 a 1 I,

Figure 3-9 The structure of nullnorms on bounded lattices

Theorem 3.8: ([48])
Let (L,<,L,T) be a bounded lattice and leta € L\{L1, T}, S be
a t-conorm on [L,a], T be a t-norm on [a, T]. Then, the functions
Vs, Vr: L2 - L defined as follows:
S(x,y) if (x,y) € [L,al?

if (x,y)€[a, T[?U[a, T] X N, UN, X [a, T]U Dg,

a
SxAa,yna) if (x,y)€[LalXN,UN, X[L,al]UN, XN,
XAy otherwise.

Vs(x'}’) =

(3.15)
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(TCey) if (vy) €la,TI%
_Ja if (x,y) €[L,a[?U[L,a]l X N UN, X [L,a] U Dy,
VT(x.Y) - .
T(xvayva) if(x,y)€la T]XN;UN,X][a T]UN, X Ng,
xVy otherwise.

(3.16)
are nullnorms on L with zero element a, where,
D, =[L,a[X]a, T]V]a,T] X [L,a[, N, ={x € L|x Il a}.

Proposition 3.5: ([48])
Let (L,<,L,T) be a bounded lattice and leta € L\{L1, T}, S be
a t-conorm on[L,a], T be a t-norm on [a, T]. Then the function

Vir,s): L> = L defined as follow:

S(xy) if (xy) € [Lal?
Vs (6 Y) =T (x,y) if (x,y) € [a,T]?, (3.17)
a otherwise.

is a nullnorm on L with zero element a.

Another two constructions for nullnorms on bounded lattices were

presented in [35] as follows:

Theorem 3.9: ([35])
Let (L,<,1,T) be a bounded lattice, and leta € L\{L, T}, S be
a t-conorm on [L,a], T be a t-norm on [a, T]. Then, the functions

V2, VI 1?2 - L defined as follows:

S(x,y) if (x,y) € [L,al?

VS(x,y) = { T Y) if (x,y) €la, TP,
SxAa,yna) if (x,y)€[LalxXN,UN, X [L,al]UN, XN,
a otherwise.

(3.18)
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S, y) if (x,y) € [L,a]?
VG y) = 1 TG if () € [0, TF,
s XY .
Txvayva) if (x,y)€la T]XN;UN, X [a, T]UN, X Ng,
a otherwise.

(3.19)
are nullnorms on L with zero element a.
Example 3.9:
Consider the bounded lattice (L,<,L1,T) in Figure 3-10. Let
T1eT) = T)*T and s1bal = 5541 Then the functions Vs, Vy, Vir. g, Vi
and VI whose values are written in Tables 3-14, 3-15, 3-16, 3-17 and

3-18 are nullnorms on L with zero element a. They are constructed
using Equations (3.15), (3.16), (3.17), (3.18) and (3.19), respectively.

Sk

Figure 3-10 The lattice L of Example 3.9
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Table 3-15 The nullnorm V; on

Table 3-14 The nullnorm Vs

L of Example 3.9

on L of Example 3.9

S ISTISTIS TS TS TR
SIESTRSIRSTRS TSI
S IESIESIESIRSIRSIS {les
ol 3 T T T T B
SSTESIESIESIES IS IS IS
STESTESIRSTRSTRSTRSTRS
SIRIEIEIEIEIEIRS
NEIEBERIS IR
ESTESIESIES IS IR
SJESTISTRSTS TSI
S 1ESTESIESIRS IS IS RS
SIESIIS ISR TS TSRS
ST ESIESIESIES IS IS S
STESTISTRSTIS TSI
EIRIBIEIEIEIEIE
NSRS IR

Table 3-17 The nullnorm V7

Table 3-16 The nullnorm V(7 5

on L of Example 3.9

on L of Example 3.9

I SIS (8|3 |||+
VIV 8| T[TV
T IS IS |8 (S 8|8 T
O QT8 IC (TS |(T T
QIQIZT I8 || 3|
S |88 (8|8 |33 |
S EESEESHESE RSN RS s
NI IR IR
HFIS IS 8|3 ||+
VT T T IS (T[T
SSBIRSHRSHES NS ISR RS R s
OIS T T I8 (T[T |
QIQ T (S|SB
S (S| T8 I8 (T[T |
H 4|83 |Z |3 |3
Wl_abcdeT
=

Table 3-18 The nullnorm V¢ on L of Example 3.9

cld|e|T

ajajajaljlaja)a

alalalalalala
alalalalalal|d
alalalalalale

alalalal|d|e|T

vIlLlal|b

1l |Lljalblalala]|a

a

b |blalalalalala

c
d
e
T
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On the other hand, the construction of idempotent nullnorms on
bounded lattices have also attracted much attention from authors [12,
13, 16] . Note that, all construction methods introduced in Theorem 3.8
and Theorem 3.9 for nullnorms on bounded lattices are not suitable for
obtaining idempotent nullnorms on bounded lattices. However, V7 s,
introduced in Proposition 3.5 can be used to construct idempotent
nullnorms on bounded lattices, if and only if, all elements of L are

comparable with the zero element a. Consequently, V(r ) is reduced

to

St,y) if (x,y) €[Lal?
Virs)(6,y) ={T(x,y) if (x,y) € [a, T]?

a if (x,y)€[Llalx[a,T]U][a T]X[L, al.
Hence, if we put S =Sk and T = T} in the previous formula, we

obtain the following idempotent nullnorm on L:

xVy if (x,y) €[Lal?
Viy) =qxAy if (xy) €laTI?
a if (x,y)€€[Lalx[aTIU[a T]x[L,a].
Moreover, in [13, 16], a characterization of idempotent nullnorms on

bounded lattices such that there is only one element in L incomparable

with the zero element a has been introduced as follows:

Theorem 3.10: ([13, 16])

Let (L, <, 1, T) be a bounded lattice and let a € L\{L, T} and suppose
there is only one element m in L incomparable with a. Then the
following function V;: L? - L is an idempotent nullnorm with zero

element a.



(x Vy
XAy

xV(mAa)
yVv(mAa)
xA(mVa)
yA(mVa)

VI(ny) =3

Example 3.10:
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if (x,y) €[L,a]?

if (x,y) €la,T)?

if (x,y)€e[Lalx[aTlUla T]x[L,al,
if x€[Ll,alandy =m,

if x=mandy € [l,a],

if x€la,Tland y = m,

if x=mandy € [a,T],

ifx=y=m.

(3.20)

Consider the bounded lattice (L, <,0,1) in Figure 3-11. The function

V; in Table 3-19 is an idempotent nullnorm on L with zero element a.

It is constructed using Equation (3.20).

Figure 3-11 The lattice L
of Example 3.10

Table 3-19 The idempotent
nullnorm V; on L of Example
3.10

RN R IR (O

Q Qo R |R|OlO

QIQ(R|QARR IR R |R

QIARIAERRRIR

&+ (Q(Q(Q Q|+
R | (Q|Q | (Q (-

QQ(Q[Q Q|Q(Q(Q
=+ [+ N QR |R |[©ON
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Remark 3.6:

It is worth mentioning that; the ordinal sum approach has been also
introduced for copulas [61, 62] and for general algebraic structures in
[6, 8].

As we have seen, the ordinal sum construction method have long been
blamed for their limitations in constructing new associative
aggregation operator for its inability to cope with a general bounded
lattice. Therefore, we aim in the next chapters to present construction
methods for t-norms, t-conorms, uninorms and nullnorms on bounded

lattices based on the lattice-based sum approach.



CHAPTER FOUR
LATTICE-BASED SUM
CONSTRUCTION OF NULLNORMS ON
BOUNDED LATTICES
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Chapter four
Lattice-based sum construction of nullnorms on bounded
lattices
4.1 Introduction

In this chapter, we develop new construction methods for building
nullnorms on bounded lattices based on the lattice-based sum of bounded
lattices just described in chapter two. Note that, as we have explained in
chapter two, we restrict our consideration to the finite lattice-ordered
index set where each summand of the associated family is a bounded
lattice. In this case, the zero element of the nullnorm may be equal to one
of the boundaries of some summand or inside some summand. Therefore,
we restrict our consideration about the location of the zero element to be
one of the boundaries of some summand. We will illustrate what will
happen if the zero element is inside some summand. In addition, we give
a new construction method for idempotent nullnorms on bounded lattices
with zero element a to be an arbitrary point of the underlying lattice
without any restrictions on the zero element a or on the underlying
bounded lattice L. In the literature, for the nullnorm VV on a bounded lattice
L to be idempotent, we need the underlying bounded lattice L to be
distributive or there exists only one element on L incomparable with a.
By our construction methods obtained in this chapter, we can also obtain
t-norms and t-conorms from a given family of t-norms and t-conorms

on L, just by controlling the location of the zero element a.
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Definition 4.1: ([19])
Let (L, <, 1, T) be abounded lattice and a € L. The downset of a denoted
l a and the upset of a denoted T a are given by | a = {x € L|x < a},
Ta={x€L|x>a}

4.2 Construction of nullnorms on bounded lattices

Remark 4.1:

Under the consideration of finite lattice-ordered index set where each
summand of the associated family is a bounded lattice, we have for some
finite lattice-ordered index set (A, £) and for some a € A, for any t-norm
T, and any t-conorm S, on L,

T,(x,y)=xAyand S,(x,y) =xVy
when x or y is equal to one of the boundaries of L.

Lemma 4.1: ([31])

Let (A,E) be a finite lattice-ordered index set and let
L=@gep (Lgy <a Lo To) be a lattice-based sum of bounded lattices.
Assume that there exist x4, x, € L such that there is no a € A such that

{xlr x2} c La

i) Ifx; <x,, then there exist a;,a, € A such that
(x1,x2) € Ly, X Ly, with a; = a, and for all z; € Ly,
and for all z, € L,, we have z; < z,.

i) Ifxq Il x;, then for all a; €I, and a, € I,, we have
a1 I ay and for all z; € Ly, \{Lq,, Te,} and for all

Zy € Lg,\{Lqa,, Ta,} Wehavez; || z,.

Lemma 4.1 is a direct consequence from Definition 2.14 and Theorem
2.2.
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Example 4.1:
Consider the A-sum family of bounded lattices in Figure 2.7. It is clear

that, for all x € L, and y € Lg we have x < y (since a = f8). Further, for

alla € Lg\{Lp, Tg}and b € L,\{L,, T, } we have a |l b (since B Il y).

Theorem 4.1:

Consider a finite lattice-ordered index set(A,E) and let
L=@gep (Lgy <4 Lo To) be a lattice-based sum of bounded lattices.
Let a € L with a € {L,, T,} for some a € A and (T,)gea ((Sa)aen) be
a family of t-norms (t-conorms) on the corresponding
summands (Ly)gea. Then the functions V:L? > L and V,:L?> > L

defined as follow

(Sa(x,y) if x,y €L, Nl a,
Tg(x,y) if x,y € Lg NT a,
_J'B B
VV(x'y)_Qx/\y ifx€LlynTay€lgntaa+p, (4.1)
(xANa)V(yAa) otherwise.
and
Sa(x,y) if x,yELyN! aq,
Ts(x, if x,y € Lg NT a,
Vay) = | EY) fxy €l 4.2)
xVy ifx€LenNlay€lgnlaa+p,

(xva)An(yVa) otherwise.

are nullnorms on L? with zero element a.

Proof:
The proof runs only for the operation V,. The operation V, has a similar

proof.

First, we note that, for all x,y € L with x,y €l a and there isno a € A
such that {x,y} <L, then we haveV,(x,y) =(xAa)V(yAa)=

xVy.Alsoforall x el aandfory |l a ory €l a, we have:
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Vo, y)=(Aa)V(yAa)=aV (yAa) = a. Therefore, by

absorption, we will use this abbreviation without mention.

It is necessary to check that the operation V;, is well-defined. A problem

can only arise if (x,y) € Ly X Lg with x € L, N Lg for some a, € A

and we write,

. x,y€la,

a) a = B. Inthis case:

W,y) =Sgx,y) =xvgy=yif we consider
thatx,y € Lg, and V,(x,y) = xVvy =y if we consider
that x € L, and y € Lg. Thus getting the same result in
both cases.

b) a Il 8. Inthis case we have either x = T, = T and hence,
W, y) =Sg(x,y) =xVgy=xVy=x,0rx=L,=1g
and hence, V, (x,y) = Sp(x,y) =xVgy =xVy=1y.

ii. x,y €T a.This case is dual to case (i) has a dual proof due to the
duality between the t-norm and the t-conorm.
Now, we need to prove that V, is a nullnorm on L with zero

element a.

Commutativity: It is easy to see the commutativity of I/, due to the
commutativity of the t-norm and the t-conorm defined on each summand

,ANandvonlL.

Zero element: We prove that a is the zero element of I/,. The proof is split

into all the possible cases for some x € L, as follows:

i. xE€lag,
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a) There exists some a € A such that {x,a} < L,, then (from
Remark 4.1) we have,
W(x,a) =S,(x,a) =xVgaa=a
b) Thereis no a € A such that {x,a} < L,, then,
VW(x,a)=xVa=a

x €T a. This case has a dual proof of case (i) due to the duality
between the t-norm and the t-conorm.
x |l a. Then directly from the definition of V;, we have

W(x,a)=a

Monotonicity: We prove that if x <y inL, then for allz €L,

V,(x,z) < V,(y,z). The proof is split into all the possible cases, as

follows:

Case (1): Let x, y €l a. Then we have the following subcases

Subcase 1(a): z €l a,

There exist some a € A such that{x,y} < L,. Ifz € L,, then
monotonicity holds trivially due to the monotonicity of S, on L.
If z & L, then

VWx,z)=xvz<yvz=V(y2)
There isno a € A such that {x,y} € L,.

a) If x and z are in the same summand, we observe it by
considering {x,z} S Lg and y € Ls with g+ for
some 5,8 € A, then from Lemma 4.1, we have either
peédorf Il If g6, then

W, z) =Sp(x,2) Sy =yvz=W©,2)
If B 1l 6, then we have either x € {1, Tg} and hence,

V(x,2z) = Sg(x,2) =xVz<yVvz=V/(yz)
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or x € Lg\{Lp, T}, then necessarily y = T5 and hence,
Wx,z) =S(x,z) <y=yVvz=VWV(y2)
b) If y and z are in the same summand, we observe it by
considering {y,z} <L, and x & L, for somea € A.
Therfore
VW(x,z)=xVvVz<yVvz<S,(y,z)=V,(y,2)
iii.  All arguments are in different summands,

VW(x,z)=xvz<yvz=W(2)
Subcase 1(b): z €T a = WV, (x,2z) = a =V, (y,2)
Subcase 1(c): z |l a, then
Wx,z)=xAa)V(izAa) S(yAa)V(zAa) =V, (y,2)
Case (2): Let x €T a. Then y €T a, and we have:

i. z€la,thenV,(x,z) =a=W,(y,2)
ii. z €T a. In this case, the proof is a dual proof of Case (1) due to
the duality between the t-norm and the t-conorm.

iii.  zlla,thenV,(x,z) =a=V,(y,z)
Case (3): Letx €l a,y €T a.

i. z€la. In this case we have either x and z are in the same
summand or x and z are in different summands. In both cases and
due to the t-conorm defined on each summand and v on L we have,

Wx,z) <a=W(,2)

ii. z €T a.Similarly, as in case (i) we have V,,(y, z) = a and hence,
W, z)=a<V,(y2)

iii. zla,

V(x,z)=(xAa)V(izAa) <a=V,(yz)
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Case (4): Letx €l a,y |l a.

. z€la,

a) There exists some a € A such that {x,z} € L,. Then we
have either yAa € Ly, oryAa & L,. IfyAa € L,, then
necessarily y € {L,, To}. Incase y Aa = T,, then

V(x,2) =S,(x,2) < Ta=yANa=yAa)Vz
=W, 2)
In case y A a =1, then necessarily x =L, and hence
W(,z) =S,(x,z) =xVz=z=(yANa)Vz
=W, 2)
IfyAa & Ly, theny Aa > uforall u € L, and hence,
W(x,z)=S,(x,z) <ynha=yAa)Vz=V,(y2)
b) Thereisno @ € A such that {x, z} S L, then
Wx,z)=(xAa)V(izAa) < (yAa)V(zAa)
=W, 2)
ii. z€lathenV,(x,z) =a=W(y,z)
iii.  z |l a. This case is similar to subcase 1(c) resulting in a similar

proof.
Case (5): Letx Il a,y €T a.

i. z€la,
V(x,z)=(xAa)V(izAa) <a=V,(yz)
ii. z€Ta. Insimilar way of Case 3(ii) we have V,(y,z) = a and
hence,
Wx,z) =a<W(y,2)
iii.  zlla,

VWx,z)=(xAa)V(zAa) <a=V,(y,2)
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Case (6): Letx ll a,y Il a.

z €l a. This case is similar to Case 4(iii) has a similar proof.
z €T athenV,(x,2) =a=W(y,2)

z |l a,

Wx,z)=xAa)V(izAa) <(Aa)V(zAa) =V, (y,2)

Associativity: We prove that V, (V,(x,¥),2) = V,(x, Vi, (y,2)) for all

x,y,z € L. Again, the proof is split into all possible cases by considering

the relationship between the arguments x, y, z and a, as follows:

Case (1): All arguments are from | a.

There exists some a € A such that {x,y,z} € L,. In this case
associativity holds trivially due to the associativity of S, on L,.
All arguments are from different summands,
W y),z) =V, (xVy,z)=xVyVz
=V (o yVv2)=V,(x V0, 2)
In this case, we must note that, if x vy and z are in the same
summand, then necessarily x V y is equal to one of the boundaries
of this summand and hence (from Remark 4.1) we have
V,(xVyz)=xVyVz.
Exactly two arguments are from the same summand. We observe
it by considering the following cases.
a) There exists some @ € Asuchthat{x,y} S L,and z & L,.
If x or y is equal to one of the boundaries of L, then (from
Remark 4.1) associativity holds trivially due to the
associativity of v on L. Therefore, we assume that
X,y € Lo,\{Lq, T,} and then we compare z with x and y,

as follows:
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If x > zory >z, then
W (W (x,y),2) = W(Sa(x,¥),2) = Se(x,¥) V z
=Sa(x,y) = So(x,y V 2)
=W(x, W, 2)
If x <zory <z then
W (W(x,y),2) = W(Sa(x,),2) = Se(x,¥) V 2
=z=yVz=V,(y,2)
=xVIW(©,2) = V(W (y,2)
Ifxllzoryllz,thenxvz=yvz=S,(x,y)Vz
and hence,
W W (x,y),2) = W(Sa(x,¥),2) = Se(x,y) V 2
=yvz=WW,z2)
=xVIW(©,2) = V(W (y,2)
b) There exist some § € A such that {x,z} € Lg and y & Lg.
This case is similar to Case (a) resulting in similar proof.
c) There exist some § € A such that {y,z} € Ls and x & Ls.
This case is similar to Case (a) resulting similar proof.

Case (2): All arguments are from T a. This case has a dual proof of Case

(1) due to the duality between t-norm and t-conorm.
Case (3): All arguments are incomparable with a,
% h@xy),2) =V (kA vy Aa),z)

=@xna)vViyAa)V(zAa)
= Vv(x, yAa)V(zA a)) = Vv(x, W (y, z))

Case (4): Exactly two arguments are from | a.
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x,y €l a,z > a. In this case we have either x and y are in the
same summand or x and y are from different summands. In both
cases, we have V,(x,y) < a and hence,

Ve W(x»),2) = a=V,(x,a) =V, (x,W(,2)
x,y€laz|la. Then from the fact thatzAa <a, the
associativity holds by a proof exactly similar to Case (1) but with
x,y€laandzAa < a.
x,zZ€la,y>a,

Ve W(x,¥),2) = W(a,z2) = a=W(xa) = W(xW(©,2)
x,z €l a,y |l a. This case is similar to Case 4(ii) resulting in
similar proof.

v,z €l a,x > a. This case is similar to Case 4(i) resulting in
similar proof.
v,z €l a,x || a. This case is similar to Case 4(ii) resulting in

similar proof.

Case (5): Exactly two arguments are from T a.

x,y €T a,z < a. In this case we have either x and y are in the
same summand or x and y are in different summands. In both
cases, we have 1, (x,y) = a and hence
Ve W y),2) = a=V,(x,a) = W(x,W(y,2))

x,y €T a,z |l a. This case is similar to Case 5(i) resulting in
similar proof.
x,z€Tay<a.

Ve (9,2 =V(a2) = a=W(xa) =V (xW(©2)
x,z €T a,y |l a. This case is similar to Case 5(iii) resulting in

similar proof.
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v,z €T a,x < a. In this case we have either y and z are in the
same summand or y and z are in different summands. In both
cases, we have V,,(y,z) = a and hence

W y),2) = Wxa) = a=W(x, W, 2)
v,z €T a,x || a. This case is similar to Case 5(v) resulting in

similar proof.

Case (6): Exactly two arguments are incomparable with a.

Vi.

xlaylaz€ela.

In this case we have x Aa < a and y Aa < a with x Aa and

y A a are on the boundaries and hence (from Remark 4.1) we have

W WGy =V (((kna) vy aa)z)

=(xAa)ViyAa)V(zAa)
= Vv(x, yAa)V(zA a))
= Vv(x' W, Z))

xlaylazcela.

%W @),z =V (kA vV A0),z) = a =V (xa)

= Vv(x' W, Z))
xllazll ay€ela. This case is similar to Case 6(i) resulting in

similar proof.
xllazllayc€Ta,

Ve (9,2 =V(a2) = a=W(xa) =V (xK(©2)
vl azllaxe€la. This case is similar to Case 6(i) resulting in
similar proof.

vl azll ax €T a.This case is similar to Case 6(iv) resulting in

similar proof.

For other possibilities we distinguish the following cases
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. x€lay€eltazla,

W W(xy),z) =W(a,z) =a=VW(xa) = Vv(xr W, Z))
. x€laylazela,

% (M), =V, (xra) v A®)z) = a=Vxa)
= Vv(x’ W, Z))
. x€la,y€elazla,
VW (W(x,y),z) =V,(a,z)=a= Vv(x, yAa)V(zA a))

= Vv(x' W, Z))
iv. x€la,yllazl|a. Thiscase issimilarto Case (iii) resulting in

similar proof.

V. xllayla,zE€Ta. This case is similar to Case (ii) resulting in
similar proof.

vii xlla,yTaz!a. This case is similar to Case (i) resulting in

similar proof.

Example 4.2:

Consider the lattice-ordered index set (A, E) and its lattice-based sum of
bounded lattices L of Example 2.3 with elements distribution shown in
Figure 4-1. Define a drastic product t-norm T, on L, and a drastic sum
t-conorm S, on L. Then the functions V,, and V/, whose values are written
in Table 4-1 and Table 4-2 are nullnorms on L with zero element a. They

are constructed using Formulas (4.1) and (4.2), respectively.
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={1}

Ly, =

Ls =Ly, = {0)

Figure 4-1 The lattice L of Example 4.2

Table 4-1 The nullnorm V,, on L of Example 4.2
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Table 4-2 The nullnorm V, on L of Example 4.2

ValO|x|y|z|t]le|fl|lgla|b|lc|d]|1l
O|O0(x|yl|lz|t|ala|la|lala|a|a|a
X |x|x|yl|lz|t|ala|la|a|a|a|a]|a
ylylyl|t|t|t|ala|la|a|a|a|a]|a
z|z|z|t|t|t|a|la|a|ala|a|al|a
t|t|t|t|t|t|lala|la|la|a|a|a]|a
e lalalalala|l|1l|1l|a|b|c|d]|1
flalalala|la|l|1l|1l|a|b|c|d|1
glalalalala|l|1l|1l|a|b|c|d|1
al|alalalalala|lal|alalala|al|a
b|la|a|ala|la|b|b|b|a|a|a|b|b
c |lalalalala|c|c|c|a|a|a|c]|c
d|a|la|lala|a|d|d|d|a|b|c|d|d
1 |alalalala|l|1|1|a|b|c|d]|1l

Corollary 4.1:

Consider a finite lattice-ordered index set (A, E) and a lattice-based sum
of bounded lattices L =@ gep (L, <e» La» To)- If we put S, = Sj and
T, =T} forall « € A in V,, and V, in Theorem 4.1, then we obtain the

following nullnorms on L with zero element a € L

(T, if x,y € (Lg Nl a)\{L,},
V\/D(x,y) — J.[g lf X,y € (L[)’ NnT a)\{TB},
XAy ifxELanTa,yELﬁnTa,aiﬁ,

\((x Aa)V (yAa) otherwise.

(T, if x,y € (Lg L a)\{L,},
Vo y) = | lg if x,y € (Lg NT a)\{Tg},
A xXVy ifx€Llyntay€lgntaa+p,

\((xVa)A(yVa) otherwise.
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4.3 Construction of idempotent nullnorms on bounded lattices

Remark 4.2:

Given a finite lattice-ordered index set (A, E) and a lattice-based sum of
bounded lattices L =@gep (Ley <ao» Lo To) anda € L\{L,T}. The
nullnorms V,, and V, given in Theorem 4.1 may not work to construct
idempotent nullnorms on L for any zero element a € L, such that, for

some x € L with x || a we have
V(,x)=xAa+xandV,(x,x) =xVa+x
Inspired by the last observation, we introduce the following theorem

Theorem 4.2:

Consider a finite lattice-ordered index set(AE) and et
L=@Bgep (Lgy <a Lla To) be a lattice-based sum of bounded lattices.
Leta € Lwitha € {1,, T,} forsome a € Aand (T,) gea ((Sa)aen) be
family of t-norms (t-conorms) on the corresponding summands (L) gen-

Then the functions V!: L? - L and V/}: L? - L defined as follow

S (x,y) if x,y € Lo Nl a,
i Tp(x,y) if x,y €LgnTa,
veoy) = XAy if (xelgntayelgntaa#p)or(x=yla),
(xAa)V(yAa) otherwise.
(4.3)
Sa(x,v) if x,y €L,Nl a,
Vitey) = Tp(x,y) if x,y €LgnTa,
A Y= xVy if(xelynlayelgnlaa=p)or(x=yla),
k(x Va)A(yVa) otherwise.
(4.4)

are nullnorms on L with zero element a.
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Proof:
The proof runs only for the operation V. The operation V/} has a similar

proof.

The commutativity, the monotonicity and the fact that a is the zero
element of V! have exactly the same proof as the corresponding one from

Theorem 4.1. It is only remaining to see the associativity of V..
Associativity: We prove that:
VIV (x, ), 2) = Vi(x, Vi(y,2)) forall x,y,z € L.

Associativity of /! is preserved in all cases by exactly the same proof of
the corresponding cases from Theorem 4.1, but we investigate if at least
two equal arguments are incomparable with a. Therefore, we assume that

x =y |l a and distinguish the following cases
Case (1): z Il a with z # x (equivalent to z # y)

W xy),2) =V &Ay,z) =V (x,2) =(xAa)V(zAa)
=xANa)V(yAa)V(zAa)
=W (x,Aa)V(zAra) =V (x, VI (3,2)

Case (2): z €l a,
WWEG,y),2) =V (xAy,z) =Vl (x,z2) =(xAa)V(zAa)

=(xAa)VviyAa)V(zAa)
=W (x,Aa)Vv(zra) =V (x,V (y,2))

Case (3):z €l q,

VoW (,),2) =V (xAy,z) =V (x,2) = (x Aa) V (z A a)
=a=Wxa)=Wkx@Aa)Va)
=W (x,ra)Vv(izra) =V (x,V (v,2))

All other cases can be shown in a similar way.
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Corollary 4.2:
If we put T, =T4 and S, = S& on L, for all @ € A in V! and V{ in

Theorem 4.2, then the following functions are idempotent nullnorms on L.

I _(xAy if x,yeta)or (x =yl a),
W xy) = {(x Aa)V (yAa) otherwise.

I _(xVy if xyela)or(x=yla),
Va () = {(x va) A(yVa) otherwise.

Note that V! and V! just described in Corollary 4.2 are to be considered
as a new constructions for idempotent nullnorms on bounded lattices
without any restrictions on the zero element a or on the underlying

bounded lattice.

Recall that, the nullnorm V7, in Proposition 3.5 is an idempotent
nullnorm on a bounded lattice L if and only if the underling bounded
lattice L is a chain (i.e. all elements in L are comparable with the zero
element a). On the other hand, the nullnorm V; in Theorem 3.10 is
idempotent nullnorm on a bounded lattice L if and only if there is only

one element in L incomparable with a.

Example 4.3:

Consider the lattice-ordered index set (A, E) and its lattice-based sum of
bounded lattices L of Example 4.2. Let T, = T and S, = Sk on L, for
all @ € A. Then the functions V! and V/ whose values are written in Table
4-3 and Table 4-4 are idempotent nullnorms on L with zero element a.

They are constructed using Formulas (4.3) and (4.4), respectively.
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Table 4-3 The idempotent nullnorms V! on L of Example 4.3

Cc

c

tlajlajalja|a
tlajlajala|a
tlajlajalja|a
tlajlajala|a
tlajlajala|a
tlajlajalja|a
tlajlajala|a

t
t
t
t
t
t

tiglajlajalala

elflgla|lblc|d|1

t
t
t

t

t
t
t
t

t

t
VA

t

Olx|y|z

Z | Z

alalalalalalalalalalalala
alalalalalalalala|bl|lal|lb|b

aiajlajajala|jajalaja)c

alalalalalalalala|b|c|d]|d
alalalalalalalala|b|c|d]|1

W

0 |0|x|y|z
X |x|x|y|z

Y | Y| y|Yy

V4

a
b

c

d
1

Table 4-4 The idempotent nullnorm V! on L of Example 4.3

|33 (Z B P |H ||| B0 |
T I T TR OIT|I
VI IT T T T[T O|V|[VITIT|[O[O[O
QT I I I IIQQQITQTQQ
SIS 3|
DI I I Z|H | DB O[T
ST T T H [ NH TR
VB T BV |H [ BR[|
RR(R(PP(P T T TS TS & T
NIN[NR N+ I I I I3 3|3
A&l alavlvlggigggigigigig s
RIR|IR| XN+ T (I 3T 833
IO | R XN+ T (I IZ|ZT T I3
o R & N[R| v DB 0[T |
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Note that, in Example 4.3, although L isn’t distributive (since
eANa=fAaandeVa=fVabute # f), the obtained nullnorms V]

and V! are idempotent nullnorms on L with the indicated zero element a.

Corollary 4.3:

Consider a finite lattice-ordered index set (A, E) and a lattice-based sum
of bounded lattices L =@ yep Ly <a» Lo To)- If we put S, = S5 and
T, =T} forall @ € A in V! and V/ in Theorem 4.2, then we obtain the

following nullnorms

Ta if x,y € (Leg N4 a)\{Lo},
Ve, y) = Lg if x,y € (Lg NT a)\{Tg},
’ XAy if (xelyntayelgntaa#p)or(x=yla),
(xAa)V(yAa) otherwise.
Ta if x,y € (Leg L a)\{L.},
Vi) = 1P if x,y € (Lg nT a)\{Tg},
xVy L'f(xELania,yELﬁnla,a:#,B)or(xzylla),
(xva)Aa(yva) otherwise.
Corollary 4.4:

Consider a finite lattice-ordered index set (A, E) and a lattice-based sum
of bounded lattices L =@ 4ep (Lo, <o Lo To)- If we put S, = Si and
T, = Tf forall @ € A in V, and V, in Theorem 4.1, then we obtain the

following nullnorms

y _(xAy ifx,y €l a,
Whx,y) = {(x Aa)V (yAa) otherwise.
and
" _(xVy if x,y €l a,
VA" (x,y) = {(x Va)A(yVa) otherwise.
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Remark 4.3:

The zero element a of the nullnorms V., V,, Vil and V/ was restricted to
be one of the boundaries of some summand. If a is inside some summand,
then V,,V,,W! and V! may not work to construct nullnorms on L. For
example, if we consider a lattice-ordered index set (A, E) and a lattice-
based sum of bounded lattices L =@ 4ep (Lay <a»Lla Te) and there
exists some a € A such that {x,y,a} € L, with L,<x<a<y<T,
and T, = Tk, S, = SE, then from Theorem 4.1 and Theorem 4.2 we have:

V(x,a) = Vi(x,a) = Vi(x,a) = Vi(x, a)
=S,(x,a) =S5(x,a) =T, #a

W,a) =Vi(y,a) =W, a) =Vi(y a)
=T,(y,a) =T5(y,a) =L,# a
This violates the zero element property of the nullnorm operator.
However, the functions V,, V,,, Vil and V} are still nullnorms on L in case
a is inside some summand if and only if the t-norm and the t-conorm
defined on this summand are fixed to be the minimum TL and the

maximum S4,, respectively.
4.4 More illustrative examples

Example 4.4:

Consider the lattice-ordered index set (A, =) shown in Figure 4-2 and the
lattice-based sum of bounded lattices L shown in Figure 4-3 where
L, ={0}, Ly ={x,y,2,t,9}, Lg=1{g}, Ls={ab,cdef}, and
Lt, ={g,h,m,n, 1}. Let T7 be the t-norm defined on L+, whose values
are written in Table 4-5 and S be the t-conorm on Ls whose values are

written in Table 4-6. Then the functions V,, and V, which values are
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written in Table 4-7 and Table 4-8, respectively, are nullnorms on L with

zero element a.

Ta
B
1)
La
Figure 4-2 The lattice Figure 4-3 The lattice L of
(A, E) of Example 4.4 Example 4.4

Table 4-5 The t-norm T, Table 4-6 The t-conorm S

onLr, on Lg

Try|g|hjmin|1 Ss|blcld|e|f]|a
g |9|9|9|9|49 b |b|c|d|e|f]|a
h lg|h|g|g|h clc|flfla|fla
m lglglglglm dl|d|f|flal|f]|a

e lelalalalala
n19191919 " flrlflflalf]a
1 |glhfm|n|1 al|lalalalalala
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Table 4-7 The nullnorm V,, on L of Example 4.4

— TS Z IS SIS S 2
SIS TS IS IS S IS S S I S TS SIS TS TS SIS VIS NS S
NI IES IR IR B RS IR IR IR I RS IR S RS S S
SIS TS IS TS TS RS TS TS TS SIS YIRS FIS] IS VS R
SIS R IR T R I I T I IS A S TR A S T T
S S S S S B B B B B B
V| V| V[ V| Q[ VT V(I ITIIZ T
DB T T BT B T3 3 3B
Of O] O| O] V| O] B| Vv | 3| | 3| B T
Qlalalalalal el ol ol 3333
SIS SRS ISR IS S I S IS TR TS T S S VRS
wlo|lojolo|lo| glal uT v 3 3 33
N OIOIO|IOoOIO|IINNOIT V(NI
SNololololo glal o v 3 333
Riololo|lo|o3lal o vl 3 333
O|O|OO|0O|OIQ| UV VNI IS8T
Nlo| R &N | S| 0T o 3|<| & 2|

Table 4-8 The nullnorm V, on L of Example 4.4

3T S 333333 g R
SIS SIS IS IS TSRS TS TS TS S IS S
SRS RS RS ES B ESTESIRSIESTRS IS IS (RS S S
RESIRS IS IS IS VIES S TS TS IS TS TS TS IS VS S
SIS IS T I S T I S S I S R S T~ IS TS T S TS T
s B B B B Bl Bl T B B
IS I I S S I R S I S S TS IS TS T S TS T~
S TR STRSIRSTRSI RS TIS L S I S TR T S TS IS TR
Ol U B BB BB ol B BB BT
Qlal s3I ol v T3
SURSTIRS IS IS VIS RSV IS TS TR TS TS TS TS VIS VIS S
SRS S SRS SIS TSI IS IS TRS TS IS RS IS IS
N SIS TSI 3333 TS
SRS RS IS SRS TSI IS TES TR TSRS IS IS Sy
SYESIES IS SIS RS IS TS TSI TS TS {IS VIS RS VS
olo| 3 3 3 3 el oT v T 33
Ho| R & N w| ofaf ol o] 3|<| 8 |
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Example 4.5:

Consider the lattice-ordered index set (A, £) of Example 4.4 and it lattice-
based sum of bounded lattices L in Figure 4-4. LetS,, = SE. Then the
functions V,, and V, whose values are written in Table 4-9 and Table
4-10, respectively, are nullnorms on L with zero element a. Note that a is
inside Lg, then according to Remark 4.3, the t-norm Ts and the t-conorm
Ss are considered to be the minimum Tf and the maximum Sj,

respectively.

Figure 4-4 The lattice L of Example 4.5
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Table 4-9 The nullnorm V,, on L of Example 4.5

ciajcjcjalcjaj|a

ciajcjcjalcijaj|a

s|{rla|b|c|d|e|f|1

(s

(s

t

O|lx|y|z

z|lz|lzl|z|lzl|lz|lz|la|b|c|d|c|la|a

z|lz|lzl|z|lzl|lz|lz|la|b|c|d|c|la]|a

z|lz|lz|z|lzl|lz|z|la|b|c|d|c|la]|a

z|lz|zl|z|lzl|lz|z|la|b|c|d|c|la]|a

alalalalala|lalalalalala|f |1

W

0| 0|x|yl|lz|z|z|z|a|b|c|d|c|a|a

X |x|z|z|z|lzl|lz|z|la|b|c|d|c|la]|a

vyi|yv|z|z|z|z|z|z|a|b|c|d|c|a]|a

z
t

S

r

a|lajlajajajajlaja|lajajajaja|aia

b|b|b|b|b|b|b|bla|b|c|d|clala

d|d|d|d|d|d|d|d|a|d|a|d|a|a]|a

flalalalal|la|a|la|a|al|la|a|a|f|f

1

Table 4-10 The nullnorm V, on L of Example 4.5

— BTV T |H[H[H | T T[T 3|~~~
S I8 (B8 |I8 [T N[BT |8 | T NN~
V(T | T |T T[T T |8 |8 |
TDIWNI-DITD (T IS (SINTC|IZSI " |83
VvV |V|ITIT|IZ|IB|L|L|TB|ITBIT|T
QR II I |T (TR (BB (IS
S 3|8 | 8| |8 |88 |8 T |
S8 BT |H[HA[H | T | T | T~
0 | T IT|IT|IT|H[(HA[H | T | T[T~
L (T VT8 [H|H | |33 3|~
N|ININININ|S| T (IR0 [T |Z|
2NN NN INITD|Z (BRI T | B IS
RIRIN|ININ|IT|Z T[T |B|IT|S
Clo|R|[AIN|IT || T (B |IQR|IvIT|I8|IT|S
VAOXV,.Ztsrab O | O |~
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4.5 Lattice-based sum construction of t-norms and t-conorms on
bounded lattices

The obtained nullnorms in Theorem 4.1 and Theorem 4.2 can be used to
construct t-norms and t-conorms from a given family of t-norms and
t-conorms on bounded lattices, such that if a = T we obtain t-conorms
and if a =1 we obtain t-norms. Consequently, we get, as a corollary, the
following lattice-based sum constructions of t-norms and t-conorms
obtained by El-Zekey [31] in a more general setting where the lattice-
ordered index set need not be finite and the so-called t-subnorms
(t-subconorms) can be used (with a little restriction) instead of t-norms
(t-conorms) as summands in the lattice-based sum construction of t-norms

(t-conorms).

Corollary 4.5:
With all the assumptions of Theorem 4.1 and Theorem 4.2 the nullnorm

functions V,, V,, Vil and v/} satisfy the following:

i. Ifa=1thenV, =V,=V! =V =T:1?> > L where

_(Ta(,y) if (6,y) € Ly X L,
Tl y) = {x Ay otherwise.

is a t-norm on L i.e. the functions V., V,, V.l and V! are reduced to
the lattice-based sum construction of t-norms on L given in [31].
ii. Ifa=T,thenV, =V, =W =V/ =S:1? > L where,

SCxy) = {Sa(x, y) if () € Lg X La,

xVy otherwise.
is a t-conorm on L i.e. the functions V., V,, V! and V/ are reduced
to the lattice-based sum construction of t-conorms on L given in

[31].
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We end this section by showing some examples. For more examples for
the construction of t-norms and t-conorms we recommended [31].
Example 4.6:

Consider the lattice-ordered index set (A, =) in Figure 4-5 and the lattice-
based sum of bounded lattices L in Figure 4-6 where L, , = {0, a, b, c},
Le=L,={c}, Ly ={c,d,e,f}, Lg={mmnk,f}, Ls={chgnr}
L, ={f}and L, =L, = {1}.

Define a drastic product t-norm T}, and a drastic sum t-conorm S, on
L,,,Lq Lpg and Ls. It is easy to check that the operation T whose values
are written in Table 4-11 is a t-norm on L with neutral element 1. Also,
the operation S whose values are written in Table 4-12 is a t-conorm on L

with neutral element 0.

Figure 4-5 The lattice Figure 4-6 The lattice L of
(A, E) of Example 4.6 Example 4.6
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Table 4-11 The t-norm T on L of Example 4.6

1

1

a

(s

cilmin|k|f

cm@mm m@mm

cm@m @ m|n

clm| m|m|k

c
c
c

c

glh|r

c

flg|lh|r m|n|k

f

flglh|rim|n|k

Cc
Cc
Cc

Cc
Cc
Cc
Cc
Cc
Cc

c
c
c

c
c
c
c
c
c

Olal|b]|c

Olal|b]|c

Olal|b]|c

T|O|la|b|c|d]|e

0/{0{0|0O|O|O0O|O|O]|O]O|O|O]O|O0]O

a|0({0|0jalalalal|lalala]| a

b{0(0(O|b|b|b|b|b|b|b|b|b|b|b

c

d|0|la|b]|c

e

flOla|b|c|d|e
g|!0lal|b|c
h|O|a|b|c

r

m|0|al|b]|c
n|0lalb|c
k|O0|la|b]|c

1|0|lalb|cl|d]e

Table 4-12 The t-conorm S on L of Example 4.6

1 11|11
1 11|11
1 11|11

dlie|flg|h|r m|n|k|1

die|flg|h|r m|n|k|1

die|flg|h|r m|n|k|1

die|flg|h|r m|n|k|1

die|flg|h|rm|n|k|1

fIfIfILTLfIfIf]T

111|1|r|r|r

111|111} 1}1(1|1

Cc
c
c
c
c

e

r

1

b

b
c
c
c

e

r

1

a
a
c
c
c

e

r

1

dld|d|d|d|f|f|fl1|1|1]|Ff|f|f]1

JAVEVEVEDEVAVAVARSRIREN AR

glglglglgl|l|1|1l|r|r|r

h|lh|lh|h|h|1|1|1|T|T]|T

mim m m m|f|f|f|1|1]|1|m|n|k]|1

ninin|n|n|f|flfl1|1|1(n|f|f]|1
k| k|k|k|k|fIflfl1]1|1]k]|f]f]|1
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Chapter five
Lattice-based sum construction of uninorms on
bounded lattices

5.1 Introduction

In this chapter we give our proposal method for constructing uninorms on
bounded lattices. Similarly, as in the case of nullnorm, we also restrict our
consideration for the lattice-ordered index set to be finite and each
summand of the underlying bounded lattice L to be a bounded lattice. The
neutral element e of the uninorm may be equal to one of the boundaries
of some summand or inside some summand. Therefore, we restrict our
consideration to the case in which e is one of the boundaries of some
summand, and we will explain what will happen if it is inside some
summand. By our construction methods introduced in this chapter, we can
obtain t-norms and t-conorms from a given family of t-norms and
t-conorms on bounded lattices. The idempotent uninorms construction on
bounded lattices is also available by our construction methods, just by
putting the corresponding idempotent t-norm and idempotent t-conorm on

each summand lattice of the underlying bounded lattice L.

5.2 Construction of uninorms on bounded lattices

Theorem 5.1:

Consider a finite lattice-ordered index set(A,E) and et
L =@ ep Ly, <g Lg T,) be a lattice-based sum of bounded lattices.
Let e € L with e € {1,, T,} for some a € A and (Ty)gen ((Sa)aen) be

a family of t-norms (t-conorms) on the corresponding
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summands (Ly)gea. Then the functions U;:L?2 - L and Up:L? > L
defined as follows:

(T,(x,y) ifx,y€L,Nnle,
Sg(x,y) if x,y€lLgnTe,
XAy ifx€losnley€elgnlea=p,

Uiey) — 5.1
1 y) y if x€leandy e, &Y
x ifyeleandx |l e,
\x Vy otherwise.
and
(Ta(X:J’) lf x'y € La ni €
Sp(x,y) ifxy€lgnle,
UiGoy) = {XVY  Ux€lanleyelgnleasp, (5.2)
y if x€Teandy e,
x ifyeteandx |l e,
\Xx Ay otherwise.

are uninorms on L with neutral element e.

Proof:

The proof runs only for the operation U,. The operation U; has a similar

proof.

First it is necessary to check that the operation U, is well defined. A
problem can only arise if (x,y) € L, X Lg with x € L, N Lg for some

a, f € A and write,

i. x,y€Ele,
a) a = . Inthis case:
Ux,y) =Tg(x,y) =xnNgy=x if we consider

thatx,y € Lg and U,(x,y) =x Ay = xif we consider
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that x € L, and y € Lg. Thus getting the same result in
both cases.
b) a Il B. Inthis case we have either x = T, = T and hence,
Ul(x,y) =Tg(x,y) =xNgy=x ANy =yO0r x=L,=1g
and hence, Uy(x,y) = Tg(x,y) =xAgy =x Ay = x.
ii. x,y €T e. Inthis case we have a dual proof of Case (i) due to the

duality between the t-norm and the t-conorm.
Now, we need to prove that U, is a uninorm on L with neutral element e.

Commutativity: The commutativity of U, is preserved due to the
commutativity of the t-norm and the t-conorm on each summand also A

and vonlL.

Neutral element: We prove that e is the neutral element of U, by splitting

the following cases for some x € L

i. x€le

a) If there exists some a € A such that {x,e} € L,, then

(from Remark 4.1) we have,
U(x,e) =T,(x,e) =xN,e=x
b) If there isno a € A such that {x,e} € L, then
Ul(x,e)=xNe=x
ii. x €Te. This case has a dual proof of Case (i) due to the duality
between the t-norm and the t-conorm.

iii. x|l e. Then directly from the definition of U, we have

U(x,e) =x
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Monotonicity: We prove that if x<y then for allzel,
U (x,z) < U, (y,z). The proof is split into all the possible cases, as

follows:
Case (1): Suppose that x, y €l e. Then we have the following subcases
Subcase 1(2): z €l e,

i.  There exists some a € A such that{x,y} < L,. Ifz € L,, then
monotonicity holds trivially due to the monotonicity of T, on L.
If z & L, then
Ux,z)=xNz<yANz=U((y z)
ii. Ifthereisno a € Asuchthat {x,y} < L,, then we have one of the
following possibilities

a) x and z are in the same summand. We observe it by

considering {x,z} € L, and y & L, then
U@,z)=T,(x,z2) SxANz<yAz=U/(yz)

b) If y and z are in the same summand, we observe it by
considering {y,z} S L, and x € Ly with a =+ for
some a, B € A. Then (from Lemma 4.1) we have either
pcaorBlla. Incase f=athenx <uforallu€el,
and hence, U;(x,z) =xANz=x <Ty(y,z) =U,(y,2)

In case B Il a, we have one of the following possibilities
i) ye€{l, T,.}, and hence we have
Ux,z)=xNz<yANz=T,(y,z) =U(y,2)
i)y €Ly\{La Te}, then necessarily x =1z and
hence we have U,;(x,z) =xAz=x <T,(y,2z) =
Ui(y, 2)
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iii.  All arguments are in different summands. Then monotonicity

holds due to the monotonicity of AonL.
Subcase 1(b):z€eTe= U (x,z2) =xVz=z=yVz=U/(y 2)
Subcase 1(c): z lle = U,(x,z) =z = U\(y,2)
Case (2): Suppose that x, y €T e. Then we have the following subcases

Subcase 2(a): z €T e. This case has a duel proof of Case 1(a) due to the

duality between the t-norm and the t-conorm.

Subcase 2(b): If z €l e or z || e, then
U(x,z) =xVvz<yVvVz=U/(y2)

Case (3): Suppose that x €l e,y €T e,

i. z €l e. Then we have either x and z are in the same summand or
x and z are in different summands. In both cases and due to the
t-norm on each summand and A on L we have U,(x,z) < e and
hence,

Ux,z) <e<y=yVvz=U(y z)

ii. Ifz €T e, then we have either y and z are in the same summand
or y and z are in different summands. In both cases and due to the
t-conorm defined on each summand and v on L we have
z < U,(y, z) and hence we have

U(,z)=xVz=z<U/(yz)

iii. zllethenUy(x,z)=z<yvz=U\(y2)
Case (4): Suppose that x €l e,y |l e,

i. Ifz €l e, then in similar way of Case 3(i), we have U;(x,z) < x

and hence,
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Ux,2) sx<y=Uy2)

ii. zele=U(x,z2)=xVvz<yvz=U/(y2)

iii. zlle=U(xz)=z<yvz=U/(yz2)
Case (5): Suppose thatx | e,y €T e.

i. IfzelethenU(x,z)=x<y=yvz=U/(yz)
ii. IfzetethenU)(x,z) =xVvVz<yVvz<U/(yz)

iii. IfzllethenU(x,z)=xvz<yvz=U/(yz)
Case (6): Suppose thatx [l e,y |l e,

i. z€lethenU(x,z)=x<y=U\y2)

ii. z€leorzlethenU(x,z) =xvz<yVvz=U/(y2)

Associativity: We prove that Ul(x, U,(y, z)) =U,(U)(x,y),z) for all
x,y,z € L. Again, the proof is split into all the possible cases by
considering the relationship between the arguments x,y,z ande as

follows:

Case (1): Suppose that all arguments are from | e. Then we have one of

the following possibilities

i.  There exists some a € A such that {x, y, z} € L,. In this case the
associativity holds trivially due to the associativity of T, on L.
ii.  All arguments are from different summands. In this case the
associativity holds trivially due to the associativity of A on L.
In this case, we must note that, if x Ay and z are in the same
summand, then necessarily x A y is equal to one of the boundaries
of this summand and hence the associativity holds due to the

associativity of A.



87

iii.  Exactly two arguments are from the same summand. We observe

it by considering the following cases:

a)

b)

There exist some a € A such that {x,y} € L, and z & L,.
If x or y is equal to one of the boundaries of L, then
associativity holds trivially due to the associativity of A
on L. Therefore, we assume thatx,y € L,\{L,, To}. In
this case, we compare z with x and y, as follows

If x > zory >z, then

U(U,(x, ¥),2) = U(To(x,y),2) = Ta(x,y) Az =z

U(x,U(y,2)) =U(x,yNz) =U(x,2) =xANz=2z
If x <zory<z then

U(Ui(x,y),2) = U(To(x,¥),2) = To(x,y) Az

= Ta(x,y)

Ui(x, U,(y,2)) = Ui,y A 2) = Uy(x,9) = T (x, %)
If xllz oryllz, then xAz=yAz=xAyAz=
T,(x,y) A z and hence,

U(U,(x,¥),2) = Uy(To(x, y),2) = To(x,¥) Az
=xAyAz=xAU(y, z)
=Uy(x,Uy(y,2))

There exists some § € Asuchthat {x,z} S Lgand y & L.
This case is similar to Case (a) resulting in similar proof.
There exists some § € Asuchthat{y,z} € Lsand x & Ls.

This case is similar to Case (a) resulting in similar proof.

Case (2): Suppose that all arguments are from T e. This case has a dual

proof to Case (1) due to the duality between the t-norm and the t-conorm

operators.
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Case (3): Suppose that exactly two arguments are from | e. We observe

it by distinguishing the following subcases

Subcase 3(a): Assume that x,y €l e and z €l e. In this case we have
either x and y are in the same summand or x and y are in different

summands. In both cases, we have U, (x,y) < e and hence for

i. z>e,

U(x, Uy(y,2)) = Uy(x,y v 2) = Uy (x,2)
=xVz=z=U(x,y)Vz
=Uy(U,(x,y),2)

ii. zlle U(xU(y,2)=U/xz2)=z=U(U/xY),z2)

Subcase 3(b): Assume that x,z €l e and y &l e. This case is similar to

Case 3(a) resulting in similar proof.

Subcase 3(c): Assume that y,z €l e and x ¢l e. This case is similar to

Case 3(a) resulting in similar proof.

Case (4): Suppose that exactly two arguments are from T e. We observe

it by distinguishing the following subcases

Subcase 4(a): Assume that x,y €T e and z €7 e. In this case we have
either x and y are in the same summand or x and y are in different

summands. In both cases, we have U, (x,y) = e and hence for

. z<e,
Ul(x' Ul(y,Z)) = Ui(x,sz) = Ul(ny)
=Uy(x,y)vz=UU(x,y),2)
ii. If z |l e, then U;(y,z) = y vV z = e and hence we distinguish the

following cases
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a) There exists some g € A such that {x,y} € Lg, then we
have either yvz € Lg oryVvz & Lg. Incase yV z € Ly
then associativity holds due to the associativity of Sg
onLg.IncaseyV z & Lg the associativity holds due to the
associativity of v on L.

b) Thereisno B € Asuchthat {x,y} < Lg, then associativity

holds due to the associativity of v on L.

Subcase 4(b): Assume that x,z €T e and y €T e. In this case, we have
either x and z are in the same summand or x and z are in different

summands. In both cases, we have

. y<e,
U(x, Uy(y,2)) = Ui(x,y V 2) = Uy(x,2)
=U(xVy,2)
=U,(Ui(x,y),2)
ii. vy |l e. This case is similar to subcase 4(a (ii)) resulting in similar
proof.

Subcase 4(c): Assume that y,z €T e and x €T e. In this case, we have
either y and z are in the same summand or y and z are in different

summands. In both cases, we have U,(y, z) = e and hence for,

I.  x <e,wehave
Ul(x' Ul(yfz)) =xV Ui(y,z) = Ul(y' Z)
=U,(xVvy,z) =UU(xYy)z2)
ii. x|l e. This case is similar to subcase 4(a(ii)) resulting in similar

proof.
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Case (5): Suppose that exactly two arguments are incomparable with e.

We observe it by distinguishing the following subcases

Subcase 5(a): Assume that xlle,ylle andz #f e. Then we have

U,(x,y) = x vV y and hence we have one of the following possibilities

. xVy>e,
a) z<e,
Ul(x, Ul(y,z)) =U(x,y) =xVy=xVyVz
=U(x,y) vz =UU(x,y), 2)
b) z > e. In this case we have either z and x v y are in the
same summand or z and x V y are in different summands.
In both cases and from the fact that x v y is necessarily on
the boundaries for some summand, we have
Ul(x, Ul(y,z)) =U(x,yvz)=xVyVz
=Ui(x,y) vz =UUx,y),2)

ii. xVvyle,
a) z<e,
Ui(x,U(y,2)) = U(x,y) =xVy
=U(xvy,z)=UU(x,y) z)
b) z>e,

U(x,U(y,2)) =U(x,yVz) =xVyVz
=U,(x,y) vz =U(U(xYy)z)

Subcase 5(b): x ll e,z |l e and y # e, this case is similar to subcase 5(a)

resulting in a similar proof.

Subcase 5(c): y Il e,z Il e and x k e, this case is similar to subcase 5(a)

resulting in a similar proof.



91

For the remaining possibilities we distinguish the following cases

. x€ley€lezle,
Ul(x,Ul(y,Z)) =U(x,yvz)=xVyVz=yVvVz=U/(y2)
=U,(xVvyz)=UUxy)z)
. x€leylezeTle,
Ul(x,Ul(y,Z)) =U(x,yVz)=xVyVz=yVz
= Uy(y,z) = U,(Uy(x,y),2)

iii. x€ley€lezle,
U(x,U,(,2)) = U(x,2) = Uy(x vV y,z) = U (U, (x,¥), 2)

iv. x€levyllez€le,
U(x,U,(,2)) = Uy(x,y) = Uy (x,y) vV z = Uy (Uy(x,9), 2)

V. xlle,y€lez€le,

U(x,U,(y,2)) = Uy(x,y Vv 2) = U (x,2) = U, (U, (x,¥), 2)
vii xlle,y€lez€le,

Ul(x' Ul(y'z)) = Ul(x,yVZ) = Ul(x'y) = Ul(xﬂ:)/) Vz
= Ul(Ul(x,)’)'Z)

Example 5.1:

Consider the lattice-ordered index set (A, ) in Figure 5-1 and its lattice-
based sum of bounded lattices L in Figure 5-2 where
L, ={0,a,b,c}, Ls={cd}, Lg={df,g,h}, Lg={e h}and
Lv, ={hmmn1}. LetT, =T)p and S, = Sp on L, forall « € A. Then
the functions U, and U; whose values are written in Tables 5-1 and 5-2
are uninorms on L with neutral element e which are constructed using

Equations (5.1) and (5.2), respectively.
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Figure 5-1 The lattice (A, E) of Example 5.1
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Figure 5-2 The lattice L of Example 5.1
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Table 5-1 The uninorm U, on L of Example 5.1
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Table 5-2 The uninorm U; on L of Example 5.1
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Corollary 5.1:
With all the assumptions of Theorem 5.1, the uninorm functions U, and
U, as defined in Equations (5.1) and (5.2), respectively, satisfy the

following:

I. Ife=T,then

Te(x,y) if (5,¥) € Lg X Lg,
XAy otherwise.

U y) = U y) = T y) = {
is a t-norm on L i.e. the functions U, and U; are reduced to the
lattice-based sum construction of t-norms on L given in [31].

ii. Ife=L1,then

_ _ _(Sa(x,y) if (x,¥) € Lg X Lg,
Ui y) =Uitoy) = Sxy) = {x vy otherwise.
is a t-conorm on L i.e. the functions U; and U; are reduced to the

lattice-based sum construction of t-conorms on L given in [31].

Remark 5.1:
The obtained results in Corollary 5.1 are special cases of the obtained
general results in [31], in which it depends on t-subnorms (t-subconorms

by duality) and a lattice-ordered index set which need not be finite.

Remark 5.2:

Given a finite lattice-ordered index set (A, E) and a lattice-based sum of
bounded lattices L =@ 4ep (Lo, <a» Lo To), then the functions U, and U;
in Theorem 5.1 are disjunctive and conjunctive uninorms on L,

respectively, such that U, (L, T) = T and Uy(L, T) =1.

Corollary 5.2:
If we put T, = T and S, = S% on L, for all « € A in Equation (5.1) and

(5.2) in Theorem 5.1, then the functions UP and U defined as
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xANy ifxy€le,
y if xe€leandy | e,

UpP e y) = X ifyeleandx | e, (5.3)
xVy otherwise.
and
xVy ifxy€le,
UE(x,y) = y ifx€leandyl e, (5.4)

ify€leandxl e,
XAy otherwise.

are disjunctive and conjunctive idempotent uninorms on L, respectively.

Note that, the obtained uninorms UP and Uf in Equations (5.3) and (5.4),
respectively, are exactly the same greatest and smallest idempotent

uninorms, respectively, obtained in [11].

Example 5.2:

Consider the lattice-ordered index set (A, E) and the lattice-based sum of
bounded lattice L of Example 5.1. Let T, = Tk and S, = S& on L, for all
a € A. Then the functions U2 and Uf whose values are written in Tables
5-3 and 5-4 are, respectively, idempotent uninorms on L with neutral

element e.
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Table 5-3 The idempotent uninorm UP on L of Example 5.2

AR R R R AR R R AR AR N ]
VOB 0T < B 2o
g e
SEHEEHEEBEEBEEEES
cleleleeie el e g e
S IESVISIES RS IS RS IS ES IS
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Qololealal— <l gl 2w
Bo| 3o 33— < &2l
o|lo|lojo|o|lo|w o=| 8| 2o
SR OB S| g2

Table 5-4 The idempotent uninorm U on L of Example 5.2
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b
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b
b
b
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O|b|b|b|b|b|b|b|b|b]|b

a
a
a

a

0

0

C
1

b

Corollary 5.3:

Ston L, forall « € A in Equation (5.1) and

and S, =

Tp

If we put T,

(5.2) in Theorem 5.1, then we obtain the following uninorms on L with

neutral element e € L:
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(Lo ifx,y € (Le NLe)\{Tyo}

T ifx,y € (LpNT e)\{Lp},

xANy ifx€LlsnNley€Lgnlea+p,
y ifx€leandyle,

x ifyeleandx | e,

\xVy otherwise.

Ul(x,y) =

(Lo ifx,y € (Lgnle)\{Ty},

TB lf X,y € (Lﬁ NnT e)\{J_/;},

xVy ifx€Ll,NTey€Lgnlea+p,
y ifx€Teandyle,

X ifyeTeandx |l e,

\x Ay otherwise.

U (x,y) =

Remark 5.3:
Given a lattice-ordered index set (A,E) and a lattice-based sum of
bounded lattices L =@gep (Lo <e»la To) ande €L, then the

functions U, and U in Theorem 5.1 can be equivalently defined as

T.(x,y) if x,y €le,
Ui(x,y) = {Se(x,y) if x,y €le,
H(x)V H(y) otherwise.

Te(x,y) if x,y €le,
UT(X,Y): Se(x')’) ifx:y el e,
M(x) AM(y) otherwise.

where H, M: L? — L are mappings given by

1l ifx€le,
x otherwise.

T ifxe€le,
x otherwise.

H(x) = {  M(x) = {

and T,, S, are lattice-based sum of t-norms and t-conormson !l eand T e,

respectively, as a direct consequence from [31].
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Remark 5.4:

The uninorms U, and U; given in Equations (5.1) and (5.2), respectively
are based on a family of t-norms and t-conorms defined on each summand
lattice of the underlying lattice-based sum L. Consequently, given
a bounded lattice (L,<,L,T) ande € L and a t-norm T, on [L,e] and
a t-conorm S, on[e, T] which are not a lattice-based sums, then the
functions U, and U; given in Equations (5.1) and (5.2) are not a uninorms

on L as we can see in the following example.

Example 5.3:

Consider the bounded lattice L in Figure 5-2. Let
T, = TL on [0,e] and S, = S5 on [e, 1]. Then the functions U, and U; in
Equations (5.1) and (5.2) are not uninorms on L with neutral element e,

such that, if the elements h, f, g € L, then we have,

U(hU(f,9) = Uyh fVg)=Ul(hh)=S.(hh) =1,

U (Ui(h,f),g) = Ui(hV f,g) = Uy(h,g) = hV g = h.
Since 1 # h, then U, is not associative and hence U, is nota uninormon L.

Similarly, if we consider the elements d, f, g € L, then we have,

UT(d' UT(f'g)) = UT(d'f Ag) = UT(dﬂ d) = Te(d, d) =0,
Uy (Ur(d, f),g) = Ur(d A f,9) = Uy(d,g) =d A g =d.
Since 0 # d, then U, is not associative and hence U, is not a uninorm

onlL.

Remark 5.5:
The neutral element e of the uninorms U, and U; in Theorem 5.1 were
restricted to be one of the boundaries of some summand lattice of the

underlying bounded lattice L. If the neutral element e is inside some
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summand, then the functions U, and U; may not work to construct
uninorms on L. For example, if we consider a finite lattice-ordered index
set (A,E) and a lattice-based sum of bounded lattices

L=@ger Loy <aLa To) and there exists some a € A such that
{x,y,e} S L, with L,<x<e<y<T, andT, =T}, S, =Sk then

from Theorem 5.1, we have

U(x,e) = Uy(x,e) = T,(x,e) = Th(x,e) =1,# x,

Uiy, e) = Ur(y,e) = Sg(y,e) = S(y,€) = Ty # y.
This violates the neutral element property of the uninorm operator.
However, the functions U, and U; are still uninorms on L in case e is
inside some summand if and only if the t-norm and the t-conorm defined
on this summand are fixed to be the minimum T} and the maximum S%,

respectively.
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Chapter six
Conclusions and future work

6.1 Conclusions

In this thesis, based on the lattice-based sum scheme that has been
recently introduced by El-Zekey et al [30]; we developed new methods
for constructing nullnorms and uninorms on bounded lattices which are
a lattice-based sum of their summand sublattices. Subsequently, the
obtained results are applied for building several new nullnorm and
uninorm operations on bounded lattices. As a by-product, the lattice-
based sum constructions of t-norms and t-conorms obtained by El-Zekey
(see [31]) are obtained in a more general setting where the lattice-ordered
index set need not to be finite and so-called t-subnorms (t-subconorms)
can be used (with a little restriction) instead of t-norms (t-conorms) as
summands. Furthermore, new idempotent nullnorms on bounded lattices,
different from the ones given in [16], have been also obtained. It is
pointed out that, unlike [16], in our construction of the idempotent
nullnorms, the underlying lattices need not to be distributive. We remark
that lattice-based sum constructions of non-commutative associative
aggregation operators such as pseudo-t-norms, pseudo-t-conorms, pseudo
uninorms and pseudo nullnorms can be also obtained just by eliminating

the commutativity property.
6.2 Future work

Our work in this thesis open a new gates for the investegation of
aggregation functions on bounded lattices. Thus, in the same approach,

we can generate other aggregation functions on bounded lattices.
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Clearly, inspired by ideas of clifford [17] (in the context of ordinal sums
of abstract semigroups), the lattice-based sum approach could deal with
lattice-based sums of semigroups.

Note that (see [30]) though a consecutive repetition of standard ordinal
and horizontal sum constructions is covered by the lattice-based sum
approach, the opposite is not true. First of all, the lattice-based sum can
deal also with unbounded posets what is not the case of horizontal sums.
Next, the consecutive repetition of mentioned classical construction has
impact on the structure of the lattice-ordered index set. These
considerations would inevitably lead one into studying the expressive

power of lattice-based sums.
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APPENDICES

Appendix A: Python code for test the associativity of Example 3.2
Code:
from itertools import combinations_with_replacement

from sympy.abc import a,b,c,d

# Functions definations

T1 = { (0,0):0, (0,d):0, (0,a):0, (0,b):0, (0,c):0, (0,1):0,
(d,0):0, (d,d):d, (d,a):d, (d,b):d, (d,c):d, (d,1):d, (a,0):0,
(a,d):d, (a,a):a, (a,b):d, (a,c):a, (a,1):a, (b,0):0, (b,d):d,
(b,a):d, (b,b):b, (b,c):b, (b,1):b, (c,0):0, (c,d):d, (c,a):a,
(c,b):b, (c,c):b, (c,1):c, (1,0):0, (1,d):d, (1,a):a, (1,b):b,
(1,c):c, (1,1):1}

def is Associative(T,args=[0,d,a,b,c,1]):
assert len(args) »>2
for perm_i in combinations_with_replacement(args,3):

if T[(perm_i[O@],T[(perm_i[1],perm_i[2])])] !=
TL(T[(perm_i[@],perm_1i[1])],perm_i[2])]:

return False, perm_i

return True, None

def main():

print is Associative(T1)

»

(False, (a, c, c))
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Appendix B: Python code for test the associativity of Example 3.4

Code:

from itertools import combinations_with_replacement

from sympy.abc import x,b,c,d

# Functions definations

T1={ (0,0):0, (0,c):0, (0,d):0, (0,b):0,
(c,09):0, (c,c):c, (c,d):0, (c,b):c, (c,x):c,
(d,c):e, (d,d):e, (d,b):d, (d,x):0, (d,1):d,
(b,d):d, (b,b):b, (b,x):c, (b,1):b, (x,0):0,
(x,b):c, (x,x):x, (x,1):x, (1,0):0, (1,c):c,

(1,x):x, (1,1):1}

def is Associative(T,args=[0,x,b,c,d,1]):

assert len(args) >2

(0,x):
(c,1):
(b,0):
(x,c):
(1,d):

9,
C,
9,
Cs
d,

(0,1):
(d,0):
(b,c):
(x,d):
(1,b):

ConNn o0
L VI VR Vo)

for perm_i in combinations_with_replacement(args,3):

if T[(perm_i[0],T[(perm_i[1],perm_i[2])])] !=

T[(T[(perm_i[0@],perm_i[1])],perm_i[2])]:
return False, perm_ i
return True, None
def main():

print is Associative(T1)

(True, None)
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